Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnidatb Structured version   Unicode version

Theorem trlnidatb 33818
Description: A lattice translation is not the identity iff its trace is an atom. TODO: Can proofs be reorganized so this goes with trlnidat 33814? Why do both this and ltrnideq 33816 need trlnidat 33814? (Contributed by NM, 4-Jun-2013.)
Hypotheses
Ref Expression
trlnidatb.b  |-  B  =  ( Base `  K
)
trlnidatb.a  |-  A  =  ( Atoms `  K )
trlnidatb.h  |-  H  =  ( LHyp `  K
)
trlnidatb.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlnidatb.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlnidatb  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F  =/=  (  _I  |`  B )  <-> 
( R `  F
)  e.  A ) )

Proof of Theorem trlnidatb
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 trlnidatb.b . . . 4  |-  B  =  ( Base `  K
)
2 trlnidatb.a . . . 4  |-  A  =  ( Atoms `  K )
3 trlnidatb.h . . . 4  |-  H  =  ( LHyp `  K
)
4 trlnidatb.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
5 trlnidatb.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
61, 2, 3, 4, 5trlnidat 33814 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  A
)
763expia 1189 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F  =/=  (  _I  |`  B )  ->  ( R `  F )  e.  A
) )
8 eqid 2441 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
98, 2, 3lhpexnle 33647 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  -.  p ( le `  K ) W )
109adantr 465 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  E. p  e.  A  -.  p
( le `  K
) W )
111, 8, 2, 3, 4ltrnideq 33816 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  A  /\  -.  p ( le
`  K ) W ) )  ->  ( F  =  (  _I  |`  B )  <->  ( F `  p )  =  p ) )
12113expa 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( F  =  (  _I  |`  B )  <-> 
( F `  p
)  =  p ) )
13 simp1l 1012 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  ( K  e.  HL  /\  W  e.  H ) )
14 simp2 989 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  ( p  e.  A  /\  -.  p
( le `  K
) W ) )
15 simp1r 1013 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  F  e.  T )
16 simp3 990 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  ( F `  p )  =  p )
17 eqid 2441 . . . . . . . . 9  |-  ( 0.
`  K )  =  ( 0. `  K
)
188, 17, 2, 3, 4, 5trl0 33811 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  -.  p
( le `  K
) W )  /\  ( F  e.  T  /\  ( F `  p
)  =  p ) )  ->  ( R `  F )  =  ( 0. `  K ) )
1913, 14, 15, 16, 18syl112anc 1222 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  ( R `  F )  =  ( 0. `  K ) )
20193expia 1189 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )  =  p  ->  ( R `
 F )  =  ( 0. `  K
) ) )
21 simplll 757 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  K  e.  HL )
22 hlatl 33002 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  AtLat )
2317, 2atn0 32950 . . . . . . . . 9  |-  ( ( K  e.  AtLat  /\  ( R `  F )  e.  A )  ->  ( R `  F )  =/=  ( 0. `  K
) )
2423ex 434 . . . . . . . 8  |-  ( K  e.  AtLat  ->  ( ( R `  F )  e.  A  ->  ( R `
 F )  =/=  ( 0. `  K
) ) )
2521, 22, 243syl 20 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( ( R `  F )  e.  A  ->  ( R `
 F )  =/=  ( 0. `  K
) ) )
2625necon2bd 2658 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( ( R `  F )  =  ( 0. `  K )  ->  -.  ( R `  F )  e.  A ) )
2720, 26syld 44 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )  =  p  ->  -.  ( R `  F )  e.  A ) )
2812, 27sylbid 215 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( F  =  (  _I  |`  B )  ->  -.  ( R `  F )  e.  A
) )
2910, 28rexlimddv 2843 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F  =  (  _I  |`  B )  ->  -.  ( R `  F )  e.  A
) )
3029necon2ad 2657 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( R `  F )  e.  A  ->  F  =/=  (  _I  |`  B ) ) )
317, 30impbid 191 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F  =/=  (  _I  |`  B )  <-> 
( R `  F
)  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2604   E.wrex 2714   class class class wbr 4290    _I cid 4629    |` cres 4840   ` cfv 5416   Basecbs 14172   lecple 14243   0.cp0 15205   Atomscatm 32905   AtLatcal 32906   HLchlt 32992   LHypclh 33625   LTrncltrn 33742   trLctrl 33799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-map 7214  df-poset 15114  df-plt 15126  df-lub 15142  df-glb 15143  df-join 15144  df-meet 15145  df-p0 15207  df-p1 15208  df-lat 15214  df-clat 15276  df-oposet 32818  df-ol 32820  df-oml 32821  df-covers 32908  df-ats 32909  df-atl 32940  df-cvlat 32964  df-hlat 32993  df-lhyp 33629  df-laut 33630  df-ldil 33745  df-ltrn 33746  df-trl 33800
This theorem is referenced by:  trlid0b  33819  cdlemfnid  34205  trlconid  34366  dih1dimb2  34883
  Copyright terms: Public domain W3C validator