Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlle Structured version   Unicode version

Theorem trlle 33202
Description: The trace of a lattice translation is less than the fiducial co-atom  W. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
trlle.l  |-  .<_  =  ( le `  K )
trlle.h  |-  H  =  ( LHyp `  K
)
trlle.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlle.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlle  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )

Proof of Theorem trlle
StepHypRef Expression
1 trlle.l . . . . 5  |-  .<_  =  ( le `  K )
2 eqid 2402 . . . . 5  |-  ( oc
`  K )  =  ( oc `  K
)
3 eqid 2402 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 trlle.h . . . . 5  |-  H  =  ( LHyp `  K
)
51, 2, 3, 4lhpocnel 33035 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W )  e.  (
Atoms `  K )  /\  -.  ( ( oc `  K ) `  W
)  .<_  W ) )
65adantr 463 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( oc `  K
) `  W )  e.  ( Atoms `  K )  /\  -.  ( ( oc
`  K ) `  W )  .<_  W ) )
7 eqid 2402 . . . 4  |-  ( join `  K )  =  (
join `  K )
8 eqid 2402 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
9 trlle.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
10 trlle.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
111, 7, 8, 3, 4, 9, 10trlval2 33181 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( ( oc
`  K ) `  W )  e.  (
Atoms `  K )  /\  -.  ( ( oc `  K ) `  W
)  .<_  W ) )  ->  ( R `  F )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) ) ( meet `  K
) W ) )
126, 11mpd3an3 1327 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) ) ( meet `  K
) W ) )
13 hllat 32381 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
1413ad2antrr 724 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  K  e.  Lat )
15 hlop 32380 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
1615ad2antrr 724 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  K  e.  OP )
17 eqid 2402 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1817, 4lhpbase 33015 . . . . . 6  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1918ad2antlr 725 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  W  e.  ( Base `  K )
)
2017, 2opoccl 32212 . . . . 5  |-  ( ( K  e.  OP  /\  W  e.  ( Base `  K ) )  -> 
( ( oc `  K ) `  W
)  e.  ( Base `  K ) )
2116, 19, 20syl2anc 659 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( oc `  K ) `  W )  e.  (
Base `  K )
)
2217, 4, 9ltrncl 33142 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( oc `  K ) `  W
)  e.  ( Base `  K ) )  -> 
( F `  (
( oc `  K
) `  W )
)  e.  ( Base `  K ) )
2321, 22mpd3an3 1327 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F `  ( ( oc `  K ) `  W
) )  e.  (
Base `  K )
)
2417, 7latjcl 16005 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  W
)  e.  ( Base `  K )  /\  ( F `  ( ( oc `  K ) `  W ) )  e.  ( Base `  K
) )  ->  (
( ( oc `  K ) `  W
) ( join `  K
) ( F `  ( ( oc `  K ) `  W
) ) )  e.  ( Base `  K
) )
2514, 21, 23, 24syl3anc 1230 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( oc `  K
) `  W )
( join `  K )
( F `  (
( oc `  K
) `  W )
) )  e.  (
Base `  K )
)
2617, 1, 8latmle2 16031 . . 3  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( (
( ( oc `  K ) `  W
) ( join `  K
) ( F `  ( ( oc `  K ) `  W
) ) ) (
meet `  K ) W )  .<_  W )
2714, 25, 19, 26syl3anc 1230 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( ( oc `  K ) `  W
) ( join `  K
) ( F `  ( ( oc `  K ) `  W
) ) ) (
meet `  K ) W )  .<_  W )
2812, 27eqbrtrd 4415 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   Basecbs 14841   lecple 14916   occoc 14917   joincjn 15897   meetcmee 15898   Latclat 15999   OPcops 32190   Atomscatm 32281   HLchlt 32368   LHypclh 33001   LTrncltrn 33118   trLctrl 33176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-map 7459  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-p1 15994  df-lat 16000  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-lhyp 33005  df-laut 33006  df-ldil 33121  df-ltrn 33122  df-trl 33177
This theorem is referenced by:  trlne  33203  cdlemc5  33213  cdlemg6c  33639  cdlemg10c  33658  cdlemg10  33660  cdlemg17dALTN  33683  cdlemg27a  33711  cdlemg31b0N  33713  cdlemg31b0a  33714  cdlemg27b  33715  cdlemg31c  33718  cdlemg35  33732  cdlemh2  33835  cdlemh  33836  cdlemk3  33852  cdlemk9  33858  cdlemk9bN  33859  cdlemk10  33862  cdlemk12  33869  cdlemk14  33873  cdlemk12u  33891  cdlemkfid1N  33940  cdlemk47  33968  dia1N  34073  dia1dim  34081  dia2dimlem1  34084  dia2dimlem10  34093  dib1dim  34185  cdlemn2a  34216  dih1dimb  34260  dihopelvalcpre  34268  dihwN  34309  dihglblem5apreN  34311  dih1dimatlem  34349
  Copyright terms: Public domain W3C validator