Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljat3 Structured version   Unicode version

Theorem trljat3 33446
Description: The value of a translation of an atom  P not under the fiducial co-atom  W, joined with trace. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
trljat.l  |-  .<_  =  ( le `  K )
trljat.j  |-  .\/  =  ( join `  K )
trljat.a  |-  A  =  ( Atoms `  K )
trljat.h  |-  H  =  ( LHyp `  K
)
trljat.t  |-  T  =  ( ( LTrn `  K
) `  W )
trljat.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trljat3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  F
) )  =  ( ( F `  P
)  .\/  ( R `  F ) ) )

Proof of Theorem trljat3
StepHypRef Expression
1 trljat.l . . 3  |-  .<_  =  ( le `  K )
2 trljat.j . . 3  |-  .\/  =  ( join `  K )
3 trljat.a . . 3  |-  A  =  ( Atoms `  K )
4 trljat.h . . 3  |-  H  =  ( LHyp `  K
)
5 trljat.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
6 trljat.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
71, 2, 3, 4, 5, 6trljat1 33444 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  F
) )  =  ( P  .\/  ( F `
 P ) ) )
81, 2, 3, 4, 5, 6trljat2 33445 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  F
) )  =  ( P  .\/  ( F `
 P ) ) )
97, 8eqtr4d 2473 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  F
) )  =  ( ( F `  P
)  .\/  ( R `  F ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   lecple 15159   joincjn 16140   Atomscatm 32541   HLchlt 32628   LHypclh 33261   LTrncltrn 33378   trLctrl 33436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-map 7482  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-p1 16237  df-lat 16243  df-clat 16305  df-oposet 32454  df-ol 32456  df-oml 32457  df-covers 32544  df-ats 32545  df-atl 32576  df-cvlat 32600  df-hlat 32629  df-psubsp 32780  df-pmap 32781  df-padd 33073  df-lhyp 33265  df-laut 33266  df-ldil 33381  df-ltrn 33382  df-trl 33437
This theorem is referenced by:  trlcoabs  34000  cdlemk1  34110  cdlemk2  34111  cdlemk1u  34138  cdlemkfid1N  34200  cdlemkid1  34201
  Copyright terms: Public domain W3C validator