Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljat2 Structured version   Unicode version

Theorem trljat2 34840
Description: The value of a translation of an atom  P not under the fiducial co-atom  W, joined with trace. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
trljat.l  |-  .<_  =  ( le `  K )
trljat.j  |-  .\/  =  ( join `  K )
trljat.a  |-  A  =  ( Atoms `  K )
trljat.h  |-  H  =  ( LHyp `  K
)
trljat.t  |-  T  =  ( ( LTrn `  K
) `  W )
trljat.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trljat2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  F
) )  =  ( P  .\/  ( F `
 P ) ) )

Proof of Theorem trljat2
StepHypRef Expression
1 simp1l 1015 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
2 trljat.l . . . . . 6  |-  .<_  =  ( le `  K )
3 trljat.a . . . . . 6  |-  A  =  ( Atoms `  K )
4 trljat.h . . . . . 6  |-  H  =  ( LHyp `  K
)
5 trljat.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
62, 3, 4, 5ltrnat 34813 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
763adant3r 1220 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  A
)
8 hllat 34037 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
91, 8syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  Lat )
10 simp3l 1019 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
11 eqid 2462 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1211, 3atbase 33963 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1310, 12syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  ( Base `  K )
)
14 simp1 991 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
15 simp2 992 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
1611, 4, 5ltrncl 34798 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( F `  P )  e.  (
Base `  K )
)
1714, 15, 13, 16syl3anc 1223 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  (
Base `  K )
)
18 trljat.j . . . . . 6  |-  .\/  =  ( join `  K )
1911, 18latjcl 15529 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  ( F `  P )  e.  ( Base `  K
) )  ->  ( P  .\/  ( F `  P ) )  e.  ( Base `  K
) )
209, 13, 17, 19syl3anc 1223 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( F `  P
) )  e.  (
Base `  K )
)
21 simp1r 1016 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
2211, 4lhpbase 34671 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2321, 22syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  ( Base `  K )
)
2411, 2, 18latlej2 15539 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  ( F `  P )  e.  ( Base `  K
) )  ->  ( F `  P )  .<_  ( P  .\/  ( F `  P )
) )
259, 13, 17, 24syl3anc 1223 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  .<_  ( P 
.\/  ( F `  P ) ) )
26 eqid 2462 . . . . 5  |-  ( meet `  K )  =  (
meet `  K )
2711, 2, 18, 26, 3atmod2i1 34534 . . . 4  |-  ( ( K  e.  HL  /\  ( ( F `  P )  e.  A  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  ( F `  P )  .<_  ( P  .\/  ( F `  P )
) )  ->  (
( ( P  .\/  ( F `  P ) ) ( meet `  K
) W )  .\/  ( F `  P ) )  =  ( ( P  .\/  ( F `
 P ) ) ( meet `  K
) ( W  .\/  ( F `  P ) ) ) )
281, 7, 20, 23, 25, 27syl131anc 1236 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( P  .\/  ( F `  P )
) ( meet `  K
) W )  .\/  ( F `  P ) )  =  ( ( P  .\/  ( F `
 P ) ) ( meet `  K
) ( W  .\/  ( F `  P ) ) ) )
292, 3, 4, 5ltrnel 34812 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
30 eqid 2462 . . . . . 6  |-  ( 1.
`  K )  =  ( 1. `  K
)
312, 18, 30, 3, 4lhpjat1 34693 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F `
 P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  -> 
( W  .\/  ( F `  P )
)  =  ( 1.
`  K ) )
321, 21, 29, 31syl21anc 1222 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( W  .\/  ( F `  P
) )  =  ( 1. `  K ) )
3332oveq2d 6293 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( P  .\/  ( F `  P ) ) (
meet `  K )
( W  .\/  ( F `  P )
) )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) ( 1. `  K ) ) )
34 hlol 34035 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OL )
351, 34syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  OL )
3611, 26, 30olm11 33901 . . . 4  |-  ( ( K  e.  OL  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
) )  ->  (
( P  .\/  ( F `  P )
) ( meet `  K
) ( 1. `  K ) )  =  ( P  .\/  ( F `  P )
) )
3735, 20, 36syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( P  .\/  ( F `  P ) ) (
meet `  K )
( 1. `  K
) )  =  ( P  .\/  ( F `
 P ) ) )
3828, 33, 373eqtrrd 2508 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( F `  P
) )  =  ( ( ( P  .\/  ( F `  P ) ) ( meet `  K
) W )  .\/  ( F `  P ) ) )
39 trljat.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
402, 18, 26, 3, 4, 5, 39trlval2 34836 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) W ) )
4140oveq1d 6292 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( R `  F )  .\/  ( F `  P
) )  =  ( ( ( P  .\/  ( F `  P ) ) ( meet `  K
) W )  .\/  ( F `  P ) ) )
4211, 4, 5, 39trlcl 34837 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
4314, 15, 42syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  e.  (
Base `  K )
)
4411, 18latjcom 15537 . . 3  |-  ( ( K  e.  Lat  /\  ( R `  F )  e.  ( Base `  K
)  /\  ( F `  P )  e.  (
Base `  K )
)  ->  ( ( R `  F )  .\/  ( F `  P
) )  =  ( ( F `  P
)  .\/  ( R `  F ) ) )
459, 43, 17, 44syl3anc 1223 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( R `  F )  .\/  ( F `  P
) )  =  ( ( F `  P
)  .\/  ( R `  F ) ) )
4638, 41, 453eqtr2rd 2510 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  F
) )  =  ( P  .\/  ( F `
 P ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   Basecbs 14481   lecple 14553   joincjn 15422   meetcmee 15423   1.cp1 15516   Latclat 15523   OLcol 33848   Atomscatm 33937   HLchlt 34024   LHypclh 34657   LTrncltrn 34774   trLctrl 34831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-iin 4323  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6776  df-2nd 6777  df-map 7414  df-poset 15424  df-plt 15436  df-lub 15452  df-glb 15453  df-join 15454  df-meet 15455  df-p0 15517  df-p1 15518  df-lat 15524  df-clat 15586  df-oposet 33850  df-ol 33852  df-oml 33853  df-covers 33940  df-ats 33941  df-atl 33972  df-cvlat 33996  df-hlat 34025  df-psubsp 34176  df-pmap 34177  df-padd 34469  df-lhyp 34661  df-laut 34662  df-ldil 34777  df-ltrn 34778  df-trl 34832
This theorem is referenced by:  trljat3  34841  cdlemc3  34866
  Copyright terms: Public domain W3C validator