Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljat2 Structured version   Unicode version

Theorem trljat2 33198
Description: The value of a translation of an atom  P not under the fiducial co-atom  W, joined with trace. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
trljat.l  |-  .<_  =  ( le `  K )
trljat.j  |-  .\/  =  ( join `  K )
trljat.a  |-  A  =  ( Atoms `  K )
trljat.h  |-  H  =  ( LHyp `  K
)
trljat.t  |-  T  =  ( ( LTrn `  K
) `  W )
trljat.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trljat2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  F
) )  =  ( P  .\/  ( F `
 P ) ) )

Proof of Theorem trljat2
StepHypRef Expression
1 simp1l 1023 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
2 trljat.l . . . . . 6  |-  .<_  =  ( le `  K )
3 trljat.a . . . . . 6  |-  A  =  ( Atoms `  K )
4 trljat.h . . . . . 6  |-  H  =  ( LHyp `  K
)
5 trljat.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
62, 3, 4, 5ltrnat 33170 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
763adant3r 1229 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  A
)
8 hllat 32394 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
91, 8syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  Lat )
10 simp3l 1027 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
11 eqid 2404 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1211, 3atbase 32320 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1310, 12syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  ( Base `  K )
)
14 simp1 999 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
15 simp2 1000 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
1611, 4, 5ltrncl 33155 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( F `  P )  e.  (
Base `  K )
)
1714, 15, 13, 16syl3anc 1232 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  (
Base `  K )
)
18 trljat.j . . . . . 6  |-  .\/  =  ( join `  K )
1911, 18latjcl 16007 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  ( F `  P )  e.  ( Base `  K
) )  ->  ( P  .\/  ( F `  P ) )  e.  ( Base `  K
) )
209, 13, 17, 19syl3anc 1232 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( F `  P
) )  e.  (
Base `  K )
)
21 simp1r 1024 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
2211, 4lhpbase 33028 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2321, 22syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  ( Base `  K )
)
2411, 2, 18latlej2 16017 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  ( F `  P )  e.  ( Base `  K
) )  ->  ( F `  P )  .<_  ( P  .\/  ( F `  P )
) )
259, 13, 17, 24syl3anc 1232 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  .<_  ( P 
.\/  ( F `  P ) ) )
26 eqid 2404 . . . . 5  |-  ( meet `  K )  =  (
meet `  K )
2711, 2, 18, 26, 3atmod2i1 32891 . . . 4  |-  ( ( K  e.  HL  /\  ( ( F `  P )  e.  A  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  ( F `  P )  .<_  ( P  .\/  ( F `  P )
) )  ->  (
( ( P  .\/  ( F `  P ) ) ( meet `  K
) W )  .\/  ( F `  P ) )  =  ( ( P  .\/  ( F `
 P ) ) ( meet `  K
) ( W  .\/  ( F `  P ) ) ) )
281, 7, 20, 23, 25, 27syl131anc 1245 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( P  .\/  ( F `  P )
) ( meet `  K
) W )  .\/  ( F `  P ) )  =  ( ( P  .\/  ( F `
 P ) ) ( meet `  K
) ( W  .\/  ( F `  P ) ) ) )
292, 3, 4, 5ltrnel 33169 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
30 eqid 2404 . . . . . 6  |-  ( 1.
`  K )  =  ( 1. `  K
)
312, 18, 30, 3, 4lhpjat1 33050 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F `
 P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  -> 
( W  .\/  ( F `  P )
)  =  ( 1.
`  K ) )
321, 21, 29, 31syl21anc 1231 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( W  .\/  ( F `  P
) )  =  ( 1. `  K ) )
3332oveq2d 6296 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( P  .\/  ( F `  P ) ) (
meet `  K )
( W  .\/  ( F `  P )
) )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) ( 1. `  K ) ) )
34 hlol 32392 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OL )
351, 34syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  OL )
3611, 26, 30olm11 32258 . . . 4  |-  ( ( K  e.  OL  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
) )  ->  (
( P  .\/  ( F `  P )
) ( meet `  K
) ( 1. `  K ) )  =  ( P  .\/  ( F `  P )
) )
3735, 20, 36syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( P  .\/  ( F `  P ) ) (
meet `  K )
( 1. `  K
) )  =  ( P  .\/  ( F `
 P ) ) )
3828, 33, 373eqtrrd 2450 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( F `  P
) )  =  ( ( ( P  .\/  ( F `  P ) ) ( meet `  K
) W )  .\/  ( F `  P ) ) )
39 trljat.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
402, 18, 26, 3, 4, 5, 39trlval2 33194 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) W ) )
4140oveq1d 6295 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( R `  F )  .\/  ( F `  P
) )  =  ( ( ( P  .\/  ( F `  P ) ) ( meet `  K
) W )  .\/  ( F `  P ) ) )
4211, 4, 5, 39trlcl 33195 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
4314, 15, 42syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  e.  (
Base `  K )
)
4411, 18latjcom 16015 . . 3  |-  ( ( K  e.  Lat  /\  ( R `  F )  e.  ( Base `  K
)  /\  ( F `  P )  e.  (
Base `  K )
)  ->  ( ( R `  F )  .\/  ( F `  P
) )  =  ( ( F `  P
)  .\/  ( R `  F ) ) )
459, 43, 17, 44syl3anc 1232 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( R `  F )  .\/  ( F `  P
) )  =  ( ( F `  P
)  .\/  ( R `  F ) ) )
4638, 41, 453eqtr2rd 2452 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  F
) )  =  ( P  .\/  ( F `
 P ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844   class class class wbr 4397   ` cfv 5571  (class class class)co 6280   Basecbs 14843   lecple 14918   joincjn 15899   meetcmee 15900   1.cp1 15994   Latclat 16001   OLcol 32205   Atomscatm 32294   HLchlt 32381   LHypclh 33014   LTrncltrn 33131   trLctrl 33189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-iun 4275  df-iin 4276  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-1st 6786  df-2nd 6787  df-map 7461  df-preset 15883  df-poset 15901  df-plt 15914  df-lub 15930  df-glb 15931  df-join 15932  df-meet 15933  df-p0 15995  df-p1 15996  df-lat 16002  df-clat 16064  df-oposet 32207  df-ol 32209  df-oml 32210  df-covers 32297  df-ats 32298  df-atl 32329  df-cvlat 32353  df-hlat 32382  df-psubsp 32533  df-pmap 32534  df-padd 32826  df-lhyp 33018  df-laut 33019  df-ldil 33134  df-ltrn 33135  df-trl 33190
This theorem is referenced by:  trljat3  33199  cdlemc3  33224
  Copyright terms: Public domain W3C validator