Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljat1 Structured version   Unicode version

Theorem trljat1 33815
Description: The value of a translation of an atom  P not under the fiducial co-atom  W, joined with trace. Equation above Lemma C in [Crawley] p. 112. Todo: shorten with atmod3i1 33513? (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
trljat.l  |-  .<_  =  ( le `  K )
trljat.j  |-  .\/  =  ( join `  K )
trljat.a  |-  A  =  ( Atoms `  K )
trljat.h  |-  H  =  ( LHyp `  K
)
trljat.t  |-  T  =  ( ( LTrn `  K
) `  W )
trljat.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trljat1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  F
) )  =  ( P  .\/  ( F `
 P ) ) )

Proof of Theorem trljat1
StepHypRef Expression
1 trljat.l . . . 4  |-  .<_  =  ( le `  K )
2 trljat.j . . . 4  |-  .\/  =  ( join `  K )
3 eqid 2443 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
4 trljat.a . . . 4  |-  A  =  ( Atoms `  K )
5 trljat.h . . . 4  |-  H  =  ( LHyp `  K
)
6 trljat.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
7 trljat.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
81, 2, 3, 4, 5, 6, 7trlval2 33812 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) W ) )
98oveq1d 6111 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( R `  F )  .\/  P )  =  ( ( ( P  .\/  ( F `  P ) ) ( meet `  K
) W )  .\/  P ) )
10 simp1l 1012 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
11 hllat 33013 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
1210, 11syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  Lat )
13 simp3l 1016 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
14 eqid 2443 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
1514, 4atbase 32939 . . . 4  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1613, 15syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  ( Base `  K )
)
1714, 5, 6, 7trlcl 33813 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
18173adant3 1008 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  e.  (
Base `  K )
)
1914, 2latjcom 15234 . . 3  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  ( R `  F )  e.  ( Base `  K
) )  ->  ( P  .\/  ( R `  F ) )  =  ( ( R `  F )  .\/  P
) )
2012, 16, 18, 19syl3anc 1218 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  F
) )  =  ( ( R `  F
)  .\/  P )
)
2114, 5, 6ltrncl 33774 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( F `  P )  e.  (
Base `  K )
)
2216, 21syld3an3 1263 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  (
Base `  K )
)
2314, 2latjcl 15226 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  ( F `  P )  e.  ( Base `  K
) )  ->  ( P  .\/  ( F `  P ) )  e.  ( Base `  K
) )
2412, 16, 22, 23syl3anc 1218 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( F `  P
) )  e.  (
Base `  K )
)
25 simp1r 1013 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
2614, 5lhpbase 33647 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2725, 26syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  ( Base `  K )
)
2814, 1, 2latlej1 15235 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  ( F `  P )  e.  ( Base `  K
) )  ->  P  .<_  ( P  .\/  ( F `  P )
) )
2912, 16, 22, 28syl3anc 1218 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  .<_  ( P  .\/  ( F `
 P ) ) )
3014, 1, 2, 3, 4atmod2i1 33510 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  P  .<_  ( P  .\/  ( F `  P )
) )  ->  (
( ( P  .\/  ( F `  P ) ) ( meet `  K
) W )  .\/  P )  =  ( ( P  .\/  ( F `
 P ) ) ( meet `  K
) ( W  .\/  P ) ) )
3110, 13, 24, 27, 29, 30syl131anc 1231 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( P  .\/  ( F `  P )
) ( meet `  K
) W )  .\/  P )  =  ( ( P  .\/  ( F `
 P ) ) ( meet `  K
) ( W  .\/  P ) ) )
32 eqid 2443 . . . . . 6  |-  ( 1.
`  K )  =  ( 1. `  K
)
331, 2, 32, 4, 5lhpjat1 33669 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( W  .\/  P
)  =  ( 1.
`  K ) )
34333adant2 1007 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( W  .\/  P )  =  ( 1. `  K ) )
3534oveq2d 6112 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( P  .\/  ( F `  P ) ) (
meet `  K )
( W  .\/  P
) )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) ( 1. `  K ) ) )
36 hlol 33011 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OL )
3710, 36syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  OL )
3814, 3, 32olm11 32877 . . . 4  |-  ( ( K  e.  OL  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
) )  ->  (
( P  .\/  ( F `  P )
) ( meet `  K
) ( 1. `  K ) )  =  ( P  .\/  ( F `  P )
) )
3937, 24, 38syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( P  .\/  ( F `  P ) ) (
meet `  K )
( 1. `  K
) )  =  ( P  .\/  ( F `
 P ) ) )
4031, 35, 393eqtrrd 2480 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( F `  P
) )  =  ( ( ( P  .\/  ( F `  P ) ) ( meet `  K
) W )  .\/  P ) )
419, 20, 403eqtr4d 2485 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  F
) )  =  ( P  .\/  ( F `
 P ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   Basecbs 14179   lecple 14250   joincjn 15119   meetcmee 15120   1.cp1 15213   Latclat 15220   OLcol 32824   Atomscatm 32913   HLchlt 33000   LHypclh 33633   LTrncltrn 33750   trLctrl 33807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-map 7221  df-poset 15121  df-plt 15133  df-lub 15149  df-glb 15150  df-join 15151  df-meet 15152  df-p0 15214  df-p1 15215  df-lat 15221  df-clat 15283  df-oposet 32826  df-ol 32828  df-oml 32829  df-covers 32916  df-ats 32917  df-atl 32948  df-cvlat 32972  df-hlat 33001  df-psubsp 33152  df-pmap 33153  df-padd 33445  df-lhyp 33637  df-laut 33638  df-ldil 33753  df-ltrn 33754  df-trl 33808
This theorem is referenced by:  trljat3  33817  trlval4  33837  trlval5  33838  cdlemc5  33844  cdlemk1  34480  cdlemk8  34487  cdlemki  34490  cdlemksv2  34496  cdlemk7  34497  cdlemk12  34499  cdlemk15  34504  cdlemk7u  34519  cdlemk12u  34521  cdlemk21N  34522  cdlemk20  34523  cdlemk22  34542  cdlemm10N  34768
  Copyright terms: Public domain W3C validator