Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trleile Structured version   Unicode version

Theorem trleile 26258
Description: In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 12-Sep-2018.)
Hypotheses
Ref Expression
trleile.b  |-  B  =  ( Base `  K
)
trleile.l  |-  .<_  =  ( ( le `  K
)  i^i  ( B  X.  B ) )
Assertion
Ref Expression
trleile  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  \/  Y  .<_  X ) )

Proof of Theorem trleile
StepHypRef Expression
1 trleile.b . . . 4  |-  B  =  ( Base `  K
)
2 eqid 2451 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
31, 2tleile 26253 . . 3  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( le `  K ) Y  \/  Y ( le `  K ) X ) )
4 3simpc 987 . . . . . 6  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  e.  B  /\  Y  e.  B )
)
5 brxp 4965 . . . . . 6  |-  ( X ( B  X.  B
) Y  <->  ( X  e.  B  /\  Y  e.  B ) )
64, 5sylibr 212 . . . . 5  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  X
( B  X.  B
) Y )
7 brin 4436 . . . . . 6  |-  ( X ( ( le `  K )  i^i  ( B  X.  B ) ) Y  <->  ( X ( le `  K ) Y  /\  X ( B  X.  B ) Y ) )
87rbaib 898 . . . . 5  |-  ( X ( B  X.  B
) Y  ->  ( X ( ( le
`  K )  i^i  ( B  X.  B
) ) Y  <->  X ( le `  K ) Y ) )
96, 8syl 16 . . . 4  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( ( le
`  K )  i^i  ( B  X.  B
) ) Y  <->  X ( le `  K ) Y ) )
104ancomd 451 . . . . . 6  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  e.  B  /\  X  e.  B )
)
11 brxp 4965 . . . . . 6  |-  ( Y ( B  X.  B
) X  <->  ( Y  e.  B  /\  X  e.  B ) )
1210, 11sylibr 212 . . . . 5  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  Y
( B  X.  B
) X )
13 brin 4436 . . . . . 6  |-  ( Y ( ( le `  K )  i^i  ( B  X.  B ) ) X  <->  ( Y ( le `  K ) X  /\  Y ( B  X.  B ) X ) )
1413rbaib 898 . . . . 5  |-  ( Y ( B  X.  B
) X  ->  ( Y ( ( le
`  K )  i^i  ( B  X.  B
) ) X  <->  Y ( le `  K ) X ) )
1512, 14syl 16 . . . 4  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y ( ( le
`  K )  i^i  ( B  X.  B
) ) X  <->  Y ( le `  K ) X ) )
169, 15orbi12d 709 . . 3  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X ( ( le `  K )  i^i  ( B  X.  B ) ) Y  \/  Y ( ( le `  K )  i^i  ( B  X.  B ) ) X )  <->  ( X ( le `  K ) Y  \/  Y ( le `  K ) X ) ) )
173, 16mpbird 232 . 2  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( ( le
`  K )  i^i  ( B  X.  B
) ) Y  \/  Y ( ( le
`  K )  i^i  ( B  X.  B
) ) X ) )
18 trleile.l . . . 4  |-  .<_  =  ( ( le `  K
)  i^i  ( B  X.  B ) )
1918breqi 4393 . . 3  |-  ( X 
.<_  Y  <->  X ( ( le
`  K )  i^i  ( B  X.  B
) ) Y )
2018breqi 4393 . . 3  |-  ( Y 
.<_  X  <->  Y ( ( le
`  K )  i^i  ( B  X.  B
) ) X )
2119, 20orbi12i 521 . 2  |-  ( ( X  .<_  Y  \/  Y  .<_  X )  <->  ( X
( ( le `  K )  i^i  ( B  X.  B ) ) Y  \/  Y ( ( le `  K
)  i^i  ( B  X.  B ) ) X ) )
2217, 21sylibr 212 1  |-  ( ( K  e. Toset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  \/  Y  .<_  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    i^i cin 3422   class class class wbr 4387    X. cxp 4933   ` cfv 5513   Basecbs 14273   lecple 14344  Tosetctos 15302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4508  ax-nul 4516  ax-pr 4626
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3067  df-sbc 3282  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-nul 3733  df-if 3887  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4187  df-br 4388  df-opab 4446  df-xp 4941  df-iota 5476  df-fv 5521  df-toset 15303
This theorem is referenced by:  ordtrest2NEWlem  26483  ordtconlem1  26485
  Copyright terms: Public domain W3C validator