Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcocnvat Structured version   Unicode version

Theorem trlcocnvat 34707
Description: Commonly used special case of trlcoat 34706. (Contributed by NM, 1-Jul-2013.)
Hypotheses
Ref Expression
trlcoat.a  |-  A  =  ( Atoms `  K )
trlcoat.h  |-  H  =  ( LHyp `  K
)
trlcoat.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlcoat.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlcocnvat  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( R `  ( F  o.  `' G ) )  e.  A )

Proof of Theorem trlcocnvat
StepHypRef Expression
1 simp1 988 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2l 1014 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  F  e.  T )
3 simp2r 1015 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  G  e.  T )
4 trlcoat.h . . . 4  |-  H  =  ( LHyp `  K
)
5 trlcoat.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
64, 5ltrncnv 34129 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  `' G  e.  T )
71, 3, 6syl2anc 661 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  `' G  e.  T )
8 simp3 990 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( R `  F )  =/=  ( R `  G
) )
9 trlcoat.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
104, 5, 9trlcnv 34148 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  `' G )  =  ( R `  G ) )
111, 3, 10syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( R `  `' G
)  =  ( R `
 G ) )
128, 11neeqtrrd 2752 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( R `  F )  =/=  ( R `  `' G ) )
13 trlcoat.a . . 3  |-  A  =  ( Atoms `  K )
1413, 4, 5, 9trlcoat 34706 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  `' G  e.  T )  /\  ( R `  F )  =/=  ( R `  `' G ) )  -> 
( R `  ( F  o.  `' G
) )  e.  A
)
151, 2, 7, 12, 14syl121anc 1224 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( R `  ( F  o.  `' G ) )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   `'ccnv 4948    o. ccom 4953   ` cfv 5527   Atomscatm 33247   HLchlt 33334   LHypclh 33967   LTrncltrn 34084   trLctrl 34141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-riotaBAD 32943
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-iin 4283  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-1st 6688  df-2nd 6689  df-undef 6903  df-map 7327  df-poset 15236  df-plt 15248  df-lub 15264  df-glb 15265  df-join 15266  df-meet 15267  df-p0 15329  df-p1 15330  df-lat 15336  df-clat 15398  df-oposet 33160  df-ol 33162  df-oml 33163  df-covers 33250  df-ats 33251  df-atl 33282  df-cvlat 33306  df-hlat 33335  df-llines 33481  df-lplanes 33482  df-lvols 33483  df-lines 33484  df-psubsp 33486  df-pmap 33487  df-padd 33779  df-lhyp 33971  df-laut 33972  df-ldil 34087  df-ltrn 34088  df-trl 34142
This theorem is referenced by:  cdlemh1  34798  cdlemk3  34816  cdlemk6  34820  cdlemk7  34831  cdlemk12  34833  cdlemkole  34836  cdlemk14  34837  cdlemk15  34838  cdlemk5u  34844  cdlemk6u  34845  cdlemk7u  34853  cdlemk12u  34855  cdlemkfid1N  34904
  Copyright terms: Public domain W3C validator