Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlco Structured version   Unicode version

Theorem trlco 34376
Description: The trace of a composition of translations is less than or equal to the join of their traces. Part of proof of Lemma G of [Crawley] p. 116, second paragraph on p. 117. (Contributed by NM, 2-Jun-2013.)
Hypotheses
Ref Expression
trlco.l  |-  .<_  =  ( le `  K )
trlco.j  |-  .\/  =  ( join `  K )
trlco.h  |-  H  =  ( LHyp `  K
)
trlco.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlco.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlco  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  ( F  o.  G
) )  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) )

Proof of Theorem trlco
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 trlco.l . . . 4  |-  .<_  =  ( le `  K )
2 eqid 2443 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 trlco.h . . . 4  |-  H  =  ( LHyp `  K
)
41, 2, 3lhpexnle 33655 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  (
Atoms `  K )  -.  p  .<_  W )
543ad2ant1 1009 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  E. p  e.  ( Atoms `  K )  -.  p  .<_  W )
6 simpl1 991 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simpl2 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  F  e.  T
)
8 simpl3 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  G  e.  T
)
9 simpr 461 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  ( p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )
10 trlco.j . . . 4  |-  .\/  =  ( join `  K )
11 trlco.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
12 trlco.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
13 eqid 2443 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
141, 10, 3, 11, 12, 13, 2trlcolem 34375 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  ( R `  ( F  o.  G
) )  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) )
156, 7, 8, 9, 14syl121anc 1223 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p  .<_  W ) )  ->  ( R `  ( F  o.  G
) )  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) )
165, 15rexlimddv 2850 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  ( F  o.  G
) )  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2721   class class class wbr 4297    o. ccom 4849   ` cfv 5423  (class class class)co 6096   lecple 14250   joincjn 15119   meetcmee 15120   Atomscatm 32913   HLchlt 33000   LHypclh 33633   LTrncltrn 33750   trLctrl 33807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-riotaBAD 32609
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-undef 6797  df-map 7221  df-poset 15121  df-plt 15133  df-lub 15149  df-glb 15150  df-join 15151  df-meet 15152  df-p0 15214  df-p1 15215  df-lat 15221  df-clat 15283  df-oposet 32826  df-ol 32828  df-oml 32829  df-covers 32916  df-ats 32917  df-atl 32948  df-cvlat 32972  df-hlat 33001  df-llines 33147  df-lplanes 33148  df-lvols 33149  df-lines 33150  df-psubsp 33152  df-pmap 33153  df-padd 33445  df-lhyp 33637  df-laut 33638  df-ldil 33753  df-ltrn 33754  df-trl 33808
This theorem is referenced by:  trlcone  34377  cdlemg46  34384  trljco  34389  tendopltp  34429  dialss  34696  diblss  34820
  Copyright terms: Public domain W3C validator