Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcnv Structured version   Unicode version

Theorem trlcnv 34167
Description: The trace of the converse of a lattice translation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
trlcnv.h  |-  H  =  ( LHyp `  K
)
trlcnv.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlcnv.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlcnv  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )

Proof of Theorem trlcnv
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
2 eqid 2454 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 trlcnv.h . . . 4  |-  H  =  ( LHyp `  K
)
41, 2, 3lhpexnle 34008 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  (
Atoms `  K )  -.  p ( le `  K ) W )
54adantr 465 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  E. p  e.  ( Atoms `  K )  -.  p ( le `  K ) W )
6 eqid 2454 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
7 trlcnv.t . . . . . . . . . 10  |-  T  =  ( ( LTrn `  K
) `  W )
86, 3, 7ltrn1o 34126 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
983adant3 1008 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
10 simp3l 1016 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  p  e.  ( Atoms `  K )
)
116, 2atbase 33292 . . . . . . . . 9  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  ( Base `  K )
)
1210, 11syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  p  e.  ( Base `  K )
)
13 f1ocnvfv1 6095 . . . . . . . 8  |-  ( ( F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  p  e.  ( Base `  K )
)  ->  ( `' F `  ( F `  p ) )  =  p )
149, 12, 13syl2anc 661 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( `' F `  ( F `  p ) )  =  p )
1514oveq2d 6219 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )
( join `  K )
( `' F `  ( F `  p ) ) )  =  ( ( F `  p
) ( join `  K
) p ) )
16 simp1l 1012 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  K  e.  HL )
171, 2, 3, 7ltrnat 34142 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  p  e.  ( Atoms `  K ) )  ->  ( F `  p )  e.  (
Atoms `  K ) )
18173adant3r 1216 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( F `  p )  e.  (
Atoms `  K ) )
19 eqid 2454 . . . . . . . 8  |-  ( join `  K )  =  (
join `  K )
2019, 2hlatjcom 33370 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( F `  p )  e.  ( Atoms `  K
)  /\  p  e.  ( Atoms `  K )
)  ->  ( ( F `  p )
( join `  K )
p )  =  ( p ( join `  K
) ( F `  p ) ) )
2116, 18, 10, 20syl3anc 1219 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )
( join `  K )
p )  =  ( p ( join `  K
) ( F `  p ) ) )
2215, 21eqtrd 2495 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )
( join `  K )
( `' F `  ( F `  p ) ) )  =  ( p ( join `  K
) ( F `  p ) ) )
2322oveq1d 6218 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( (
( F `  p
) ( join `  K
) ( `' F `  ( F `  p
) ) ) (
meet `  K ) W )  =  ( ( p ( join `  K ) ( F `
 p ) ) ( meet `  K
) W ) )
24 simp1 988 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
253, 7ltrncnv 34148 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
26253adant3 1008 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  `' F  e.  T )
271, 2, 3, 7ltrnel 34141 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )  e.  ( Atoms `  K )  /\  -.  ( F `  p ) ( le
`  K ) W ) )
28 eqid 2454 . . . . . 6  |-  ( meet `  K )  =  (
meet `  K )
29 trlcnv.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
301, 19, 28, 2, 3, 7, 29trlval2 34165 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  `' F  e.  T  /\  ( ( F `  p )  e.  ( Atoms `  K
)  /\  -.  ( F `  p )
( le `  K
) W ) )  ->  ( R `  `' F )  =  ( ( ( F `  p ) ( join `  K ) ( `' F `  ( F `
 p ) ) ) ( meet `  K
) W ) )
3124, 26, 27, 30syl3anc 1219 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( R `  `' F )  =  ( ( ( F `  p ) ( join `  K ) ( `' F `  ( F `
 p ) ) ) ( meet `  K
) W ) )
321, 19, 28, 2, 3, 7, 29trlval2 34165 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( R `  F )  =  ( ( p ( join `  K ) ( F `
 p ) ) ( meet `  K
) W ) )
3323, 31, 323eqtr4d 2505 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( R `  `' F )  =  ( R `  F ) )
34333expa 1188 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( R `  `' F )  =  ( R `  F ) )
355, 34rexlimddv 2951 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   E.wrex 2800   class class class wbr 4403   `'ccnv 4950   -1-1-onto->wf1o 5528   ` cfv 5529  (class class class)co 6203   Basecbs 14295   lecple 14367   joincjn 15236   meetcmee 15237   Atomscatm 33266   HLchlt 33353   LHypclh 33986   LTrncltrn 34103   trLctrl 34160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-map 7329  df-poset 15238  df-plt 15250  df-lub 15266  df-glb 15267  df-join 15268  df-meet 15269  df-p0 15331  df-p1 15332  df-lat 15338  df-clat 15400  df-oposet 33179  df-ol 33181  df-oml 33182  df-covers 33269  df-ats 33270  df-atl 33301  df-cvlat 33325  df-hlat 33354  df-lhyp 33990  df-laut 33991  df-ldil 34106  df-ltrn 34107  df-trl 34161
This theorem is referenced by:  trlcocnv  34722  trlcoat  34725  trlcocnvat  34726  trlcone  34730  cdlemg46  34737  tendoicl  34798  cdlemh1  34817  cdlemh2  34818  cdlemh  34819  cdlemk3  34835  cdlemk12  34852  cdlemk12u  34874  cdlemkfid1N  34923  cdlemkid1  34924  cdlemkid2  34926  cdlemk45  34949
  Copyright terms: Public domain W3C validator