Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcl Structured version   Unicode version

Theorem trlcl 33530
Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
trlcl.b  |-  B  =  ( Base `  K
)
trlcl.h  |-  H  =  ( LHyp `  K
)
trlcl.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlcl.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlcl  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  B
)

Proof of Theorem trlcl
StepHypRef Expression
1 eqid 2441 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
2 eqid 2441 . . . . 5  |-  ( oc
`  K )  =  ( oc `  K
)
3 eqid 2441 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 trlcl.h . . . . 5  |-  H  =  ( LHyp `  K
)
51, 2, 3, 4lhpocnel 33384 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W )  e.  (
Atoms `  K )  /\  -.  ( ( oc `  K ) `  W
) ( le `  K ) W ) )
65adantr 462 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( oc `  K
) `  W )  e.  ( Atoms `  K )  /\  -.  ( ( oc
`  K ) `  W ) ( le
`  K ) W ) )
7 eqid 2441 . . . 4  |-  ( join `  K )  =  (
join `  K )
8 eqid 2441 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
9 trlcl.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
10 trlcl.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
111, 7, 8, 3, 4, 9, 10trlval2 33529 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( ( oc
`  K ) `  W )  e.  (
Atoms `  K )  /\  -.  ( ( oc `  K ) `  W
) ( le `  K ) W ) )  ->  ( R `  F )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) ) ( meet `  K
) W ) )
126, 11mpd3an3 1310 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) ) ( meet `  K
) W ) )
13 hllat 32730 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
1413ad2antrr 720 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  K  e.  Lat )
15 hlop 32729 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
1615ad2antrr 720 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  K  e.  OP )
17 trlcl.b . . . . . . 7  |-  B  =  ( Base `  K
)
1817, 4lhpbase 33364 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
1918ad2antlr 721 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  W  e.  B )
2017, 2opoccl 32561 . . . . 5  |-  ( ( K  e.  OP  /\  W  e.  B )  ->  ( ( oc `  K ) `  W
)  e.  B )
2116, 19, 20syl2anc 656 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( oc `  K ) `  W )  e.  B
)
2217, 4, 9ltrncl 33491 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( oc `  K ) `  W
)  e.  B )  ->  ( F `  ( ( oc `  K ) `  W
) )  e.  B
)
2321, 22mpd3an3 1310 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F `  ( ( oc `  K ) `  W
) )  e.  B
)
2417, 7latjcl 15217 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  W
)  e.  B  /\  ( F `  ( ( oc `  K ) `
 W ) )  e.  B )  -> 
( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) )  e.  B )
2514, 21, 23, 24syl3anc 1213 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( oc `  K
) `  W )
( join `  K )
( F `  (
( oc `  K
) `  W )
) )  e.  B
)
2617, 8latmcl 15218 . . 3  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) )  e.  B  /\  W  e.  B )  ->  (
( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) ) ( meet `  K
) W )  e.  B )
2714, 25, 19, 26syl3anc 1213 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( ( oc `  K ) `  W
) ( join `  K
) ( F `  ( ( oc `  K ) `  W
) ) ) (
meet `  K ) W )  e.  B
)
2812, 27eqeltrd 2515 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  B
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   Basecbs 14170   lecple 14241   occoc 14242   joincjn 15110   meetcmee 15111   Latclat 15211   OPcops 32539   Atomscatm 32630   HLchlt 32717   LHypclh 33350   LTrncltrn 33467   trLctrl 33524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-map 7212  df-poset 15112  df-plt 15124  df-lub 15140  df-glb 15141  df-join 15142  df-meet 15143  df-p0 15205  df-p1 15206  df-lat 15212  df-oposet 32543  df-ol 32545  df-oml 32546  df-covers 32633  df-ats 32634  df-atl 32665  df-cvlat 32689  df-hlat 32718  df-lhyp 33354  df-laut 33355  df-ldil 33470  df-ltrn 33471  df-trl 33525
This theorem is referenced by:  trljat1  33532  trljat2  33533  trlval3  33553  cdlemc3  33559  cdlemc5  33561  trlord  33935  cdlemg4c  33978  cdlemg4  33983  cdlemg6c  33986  cdlemg10c  34005  cdlemg10  34007  cdlemg12e  34013  cdlemg17dALTN  34030  cdlemg31a  34063  cdlemg31b  34064  cdlemg35  34079  cdlemg44a  34097  trljco  34106  trljco2  34107  tendoidcl  34135  tendococl  34138  tendoid  34139  tendopltp  34146  tendo0tp  34155  cdlemh1  34181  cdlemh2  34182  cdlemi1  34184  cdlemi  34186  cdlemk9  34205  cdlemk9bN  34206  cdlemkvcl  34208  cdlemk10  34209  cdlemk11  34215  cdlemk11u  34237  cdlemk37  34280  cdlemkfid1N  34287  cdlemkid1  34288  cdlemkid2  34290  cdlemk39s-id  34306  cdlemk48  34316  cdlemk50  34318  cdlemk51  34319  cdlemk52  34320  cdlemk39u  34334  tendoex  34341  dialss  34413  dia0  34419  diaglbN  34422  dia1dim  34428  dia2dimlem2  34432  dia2dimlem3  34433  dia2dimlem10  34440  cdlemm10N  34485  dib1dim  34532  diblss  34537  cdlemn2a  34563  dih1dimb  34607  dihopelvalcpre  34615  dih1  34653  dihmeetlem1N  34657  dihglblem5apreN  34658  dihglbcpreN  34667  dih1dimatlem  34696
  Copyright terms: Public domain W3C validator