Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcl Structured version   Unicode version

Theorem trlcl 34960
Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
trlcl.b  |-  B  =  ( Base `  K
)
trlcl.h  |-  H  =  ( LHyp `  K
)
trlcl.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlcl.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlcl  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  B
)

Proof of Theorem trlcl
StepHypRef Expression
1 eqid 2467 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
2 eqid 2467 . . . . 5  |-  ( oc
`  K )  =  ( oc `  K
)
3 eqid 2467 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 trlcl.h . . . . 5  |-  H  =  ( LHyp `  K
)
51, 2, 3, 4lhpocnel 34814 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W )  e.  (
Atoms `  K )  /\  -.  ( ( oc `  K ) `  W
) ( le `  K ) W ) )
65adantr 465 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( oc `  K
) `  W )  e.  ( Atoms `  K )  /\  -.  ( ( oc
`  K ) `  W ) ( le
`  K ) W ) )
7 eqid 2467 . . . 4  |-  ( join `  K )  =  (
join `  K )
8 eqid 2467 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
9 trlcl.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
10 trlcl.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
111, 7, 8, 3, 4, 9, 10trlval2 34959 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( ( oc
`  K ) `  W )  e.  (
Atoms `  K )  /\  -.  ( ( oc `  K ) `  W
) ( le `  K ) W ) )  ->  ( R `  F )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) ) ( meet `  K
) W ) )
126, 11mpd3an3 1325 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) ) ( meet `  K
) W ) )
13 hllat 34160 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
1413ad2antrr 725 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  K  e.  Lat )
15 hlop 34159 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
1615ad2antrr 725 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  K  e.  OP )
17 trlcl.b . . . . . . 7  |-  B  =  ( Base `  K
)
1817, 4lhpbase 34794 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
1918ad2antlr 726 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  W  e.  B )
2017, 2opoccl 33991 . . . . 5  |-  ( ( K  e.  OP  /\  W  e.  B )  ->  ( ( oc `  K ) `  W
)  e.  B )
2116, 19, 20syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( oc `  K ) `  W )  e.  B
)
2217, 4, 9ltrncl 34921 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( oc `  K ) `  W
)  e.  B )  ->  ( F `  ( ( oc `  K ) `  W
) )  e.  B
)
2321, 22mpd3an3 1325 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F `  ( ( oc `  K ) `  W
) )  e.  B
)
2417, 7latjcl 15534 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  W
)  e.  B  /\  ( F `  ( ( oc `  K ) `
 W ) )  e.  B )  -> 
( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) )  e.  B )
2514, 21, 23, 24syl3anc 1228 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( oc `  K
) `  W )
( join `  K )
( F `  (
( oc `  K
) `  W )
) )  e.  B
)
2617, 8latmcl 15535 . . 3  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) )  e.  B  /\  W  e.  B )  ->  (
( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) ) ( meet `  K
) W )  e.  B )
2714, 25, 19, 26syl3anc 1228 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( ( oc `  K ) `  W
) ( join `  K
) ( F `  ( ( oc `  K ) `  W
) ) ) (
meet `  K ) W )  e.  B
)
2812, 27eqeltrd 2555 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  B
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   Basecbs 14486   lecple 14558   occoc 14559   joincjn 15427   meetcmee 15428   Latclat 15528   OPcops 33969   Atomscatm 34060   HLchlt 34147   LHypclh 34780   LTrncltrn 34897   trLctrl 34954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-map 7419  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-p1 15523  df-lat 15529  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-lhyp 34784  df-laut 34785  df-ldil 34900  df-ltrn 34901  df-trl 34955
This theorem is referenced by:  trljat1  34962  trljat2  34963  trlval3  34983  cdlemc3  34989  cdlemc5  34991  trlord  35365  cdlemg4c  35408  cdlemg4  35413  cdlemg6c  35416  cdlemg10c  35435  cdlemg10  35437  cdlemg12e  35443  cdlemg17dALTN  35460  cdlemg31a  35493  cdlemg31b  35494  cdlemg35  35509  cdlemg44a  35527  trljco  35536  trljco2  35537  tendoidcl  35565  tendococl  35568  tendoid  35569  tendopltp  35576  tendo0tp  35585  cdlemh1  35611  cdlemh2  35612  cdlemi1  35614  cdlemi  35616  cdlemk9  35635  cdlemk9bN  35636  cdlemkvcl  35638  cdlemk10  35639  cdlemk11  35645  cdlemk11u  35667  cdlemk37  35710  cdlemkfid1N  35717  cdlemkid1  35718  cdlemkid2  35720  cdlemk39s-id  35736  cdlemk48  35746  cdlemk50  35748  cdlemk51  35749  cdlemk52  35750  cdlemk39u  35764  tendoex  35771  dialss  35843  dia0  35849  diaglbN  35852  dia1dim  35858  dia2dimlem2  35862  dia2dimlem3  35863  dia2dimlem10  35870  cdlemm10N  35915  dib1dim  35962  diblss  35967  cdlemn2a  35993  dih1dimb  36037  dihopelvalcpre  36045  dih1  36083  dihmeetlem1N  36087  dihglblem5apreN  36088  dihglbcpreN  36097  dih1dimatlem  36126
  Copyright terms: Public domain W3C validator