Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlat Structured version   Unicode version

Theorem trlat 33151
Description: If an atom differs from its translation, the trace is an atom. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
Hypotheses
Ref Expression
trlat.l  |-  .<_  =  ( le `  K )
trlat.a  |-  A  =  ( Atoms `  K )
trlat.h  |-  H  =  ( LHyp `  K
)
trlat.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlat.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlat  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)

Proof of Theorem trlat
StepHypRef Expression
1 simp1 995 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp3l 1023 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  F  e.  T
)
3 simp2 996 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 trlat.l . . . 4  |-  .<_  =  ( le `  K )
5 eqid 2400 . . . 4  |-  ( join `  K )  =  (
join `  K )
6 eqid 2400 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
7 trlat.a . . . 4  |-  A  =  ( Atoms `  K )
8 trlat.h . . . 4  |-  H  =  ( LHyp `  K
)
9 trlat.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
10 trlat.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
114, 5, 6, 7, 8, 9, 10trlval2 33145 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P ( join `  K ) ( F `
 P ) ) ( meet `  K
) W ) )
121, 2, 3, 11syl3anc 1228 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  =  ( ( P ( join `  K ) ( F `
 P ) ) ( meet `  K
) W ) )
13 simp2l 1021 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  P  e.  A
)
144, 7, 8, 9ltrnat 33121 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
151, 2, 13, 14syl3anc 1228 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( F `  P )  e.  A
)
16 simp3r 1024 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( F `  P )  =/=  P
)
1716necomd 2672 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  P  =/=  ( F `  P )
)
184, 5, 6, 7, 8lhpat 33024 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
( F `  P
)  e.  A  /\  P  =/=  ( F `  P ) ) )  ->  ( ( P ( join `  K
) ( F `  P ) ) (
meet `  K ) W )  e.  A
)
191, 3, 15, 17, 18syl112anc 1232 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( ( P ( join `  K
) ( F `  P ) ) (
meet `  K ) W )  e.  A
)
2012, 19eqeltrd 2488 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 972    = wceq 1403    e. wcel 1840    =/= wne 2596   class class class wbr 4392   ` cfv 5523  (class class class)co 6232   lecple 14806   joincjn 15787   meetcmee 15788   Atomscatm 32245   HLchlt 32332   LHypclh 32965   LTrncltrn 33082   trLctrl 33140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-ral 2756  df-rex 2757  df-reu 2758  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-op 3976  df-uni 4189  df-iun 4270  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4735  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-riota 6194  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-map 7377  df-preset 15771  df-poset 15789  df-plt 15802  df-lub 15818  df-glb 15819  df-join 15820  df-meet 15821  df-p0 15883  df-p1 15884  df-lat 15890  df-clat 15952  df-oposet 32158  df-ol 32160  df-oml 32161  df-covers 32248  df-ats 32249  df-atl 32280  df-cvlat 32304  df-hlat 32333  df-lhyp 32969  df-laut 32970  df-ldil 33085  df-ltrn 33086  df-trl 33141
This theorem is referenced by:  trlator0  33153  trlnidat  33155  trlnle  33168  trlval3  33169  trlval4  33170  cdlemc5  33177  cdlemg17dALTN  33647  cdlemg27a  33675  cdlemg31b0N  33677  cdlemg27b  33679  cdlemg31c  33682  cdlemg35  33696  dia2dimlem1  34048  dia2dimlem2  34049  dia2dimlem3  34050
  Copyright terms: Public domain W3C validator