Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trl0 Unicode version

Theorem trl0 30652
Description: If an atom not under the fiducial co-atom  W equals its lattice translation, the trace of the translation is zero. (Contributed by NM, 24-May-2012.)
Hypotheses
Ref Expression
trl0.l  |-  .<_  =  ( le `  K )
trl0.z  |-  .0.  =  ( 0. `  K )
trl0.a  |-  A  =  ( Atoms `  K )
trl0.h  |-  H  =  ( LHyp `  K
)
trl0.t  |-  T  =  ( ( LTrn `  K
) `  W )
trl0.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trl0  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( R `  F )  =  .0.  )

Proof of Theorem trl0
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp3l 985 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  F  e.  T
)
3 simp2 958 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 trl0.l . . . 4  |-  .<_  =  ( le `  K )
5 eqid 2404 . . . 4  |-  ( join `  K )  =  (
join `  K )
6 eqid 2404 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
7 trl0.a . . . 4  |-  A  =  ( Atoms `  K )
8 trl0.h . . . 4  |-  H  =  ( LHyp `  K
)
9 trl0.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
10 trl0.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
114, 5, 6, 7, 8, 9, 10trlval2 30645 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P ( join `  K ) ( F `
 P ) ) ( meet `  K
) W ) )
121, 2, 3, 11syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( R `  F )  =  ( ( P ( join `  K ) ( F `
 P ) ) ( meet `  K
) W ) )
13 simp3r 986 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( F `  P )  =  P )
1413oveq2d 6056 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( P (
join `  K )
( F `  P
) )  =  ( P ( join `  K
) P ) )
15 simp1l 981 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  K  e.  HL )
16 simp2l 983 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  P  e.  A
)
175, 7hlatjidm 29851 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  ( P ( join `  K ) P )  =  P )
1815, 16, 17syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( P (
join `  K ) P )  =  P )
1914, 18eqtrd 2436 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( P (
join `  K )
( F `  P
) )  =  P )
2019oveq1d 6055 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( ( P ( join `  K
) ( F `  P ) ) (
meet `  K ) W )  =  ( P ( meet `  K
) W ) )
21 trl0.z . . . 4  |-  .0.  =  ( 0. `  K )
224, 6, 21, 7, 8lhpmat 30512 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P ( meet `  K ) W )  =  .0.  )
231, 3, 22syl2anc 643 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( P (
meet `  K ) W )  =  .0.  )
2412, 20, 233eqtrd 2440 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( R `  F )  =  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   lecple 13491   joincjn 14356   meetcmee 14357   0.cp0 14421   Atomscatm 29746   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   trLctrl 30640
This theorem is referenced by:  trlator0  30653  ltrnnidn  30656  trlid0  30658  trlnidatb  30659  trlnle  30668  trlval3  30669  trlval4  30670  cdlemc6  30678  cdlemg31d  31182
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-map 6979  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-lat 14430  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641
  Copyright terms: Public domain W3C validator