Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trisegint Structured version   Unicode version

Theorem trisegint 30785
Description: A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of [Schwabhauser] p. 33. (Contributed by Scott Fenton, 24-Sep-2013.)
Assertion
Ref Expression
trisegint  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. )  ->  E. q  e.  ( EE `  N
) ( q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) ) )
Distinct variable groups:    A, q    B, q    C, q    D, q    E, q    N, q    P, q

Proof of Theorem trisegint
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 simpl1 1008 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  N  e.  NN )
2 simpl23 1085 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  C  e.  ( EE `  N ) )
3 simpl21 1083 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  A  e.  ( EE `  N ) )
4 simpl31 1086 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  D  e.  ( EE `  N ) )
52, 3, 43jca 1185 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  ( C  e.  ( EE `  N
)  /\  A  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )
6 simpl32 1087 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  E  e.  ( EE `  N ) )
7 simpl33 1088 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  P  e.  ( EE `  N ) )
86, 7jca 534 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  ( E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )
91, 5, 83jca 1185 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) ) )
10 simpr2 1012 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  E  Btwn  <. D ,  C >. )
11 btwncom 30771 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( E  Btwn  <. D ,  C >. 
<->  E  Btwn  <. C ,  D >. ) )
121, 6, 4, 2, 11syl13anc 1266 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  ( E  Btwn  <. D ,  C >.  <-> 
E  Btwn  <. C ,  D >. ) )
1310, 12mpbid 213 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  E  Btwn  <. C ,  D >. )
14 simpr3 1013 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  P  Btwn  <. A ,  D >. )
1513, 14jca 534 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  ( E  Btwn  <. C ,  D >.  /\  P  Btwn  <. A ,  D >. ) )
16 axpasch 24955 . . . 4  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( ( E  Btwn  <. C ,  D >.  /\  P  Btwn  <. A ,  D >. )  ->  E. r  e.  ( EE `  N
) ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) ) )
179, 15, 16sylc 62 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  E. r  e.  ( EE `  N
) ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )
18 simp1l1 1098 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  N  e.  NN )
1963ad2ant1 1026 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  E  e.  ( EE `  N ) )
2023ad2ant1 1026 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  C  e.  ( EE `  N ) )
2133ad2ant1 1026 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  A  e.  ( EE `  N ) )
2219, 20, 213jca 1185 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
( E  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) ) )
23 simp2 1006 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
r  e.  ( EE
`  N ) )
24 simpl22 1084 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  B  e.  ( EE `  N ) )
25243ad2ant1 1026 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  B  e.  ( EE `  N ) )
2623, 25jca 534 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
( r  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )
2718, 22, 263jca 1185 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( r  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) ) )
28 simp3l 1033 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
r  Btwn  <. E ,  A >. )
29 simp1r1 1101 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  B  Btwn  <. A ,  C >. )
30 btwncom 30771 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. A ,  C >. 
<->  B  Btwn  <. C ,  A >. ) )
3118, 25, 21, 20, 30syl13anc 1266 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
( B  Btwn  <. A ,  C >. 
<->  B  Btwn  <. C ,  A >. ) )
3229, 31mpbid 213 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  B  Btwn  <. C ,  A >. )
3328, 32jca 534 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
( r  Btwn  <. E ,  A >.  /\  B  Btwn  <. C ,  A >. ) )
34 axpasch 24955 . . . . . 6  |-  ( ( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  /\  (
r  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) ) )  ->  ( ( r 
Btwn  <. E ,  A >.  /\  B  Btwn  <. C ,  A >. )  ->  E. q  e.  ( EE `  N
) ( q  Btwn  <.
r ,  C >.  /\  q  Btwn  <. B ,  E >. ) ) )
3527, 33, 34sylc 62 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  E. q  e.  ( EE `  N ) ( q  Btwn  <. r ,  C >.  /\  q  Btwn  <. B ,  E >. ) )
36 simpll1 1044 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) ) )
3736, 1syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  N  e.  NN )
3836, 7syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  P  e.  ( EE `  N ) )
39 simpll2 1045 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  r  e.  ( EE `  N ) )
4038, 39jca 534 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  ( P  e.  ( EE `  N
)  /\  r  e.  ( EE `  N ) ) )
41 simplr 760 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  q  e.  ( EE `  N ) )
4236, 2syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  C  e.  ( EE `  N ) )
4341, 42jca 534 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  ( q  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) ) )
4437, 40, 433jca 1185 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) )  /\  (
q  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) ) ) )
45 simpl3r 1061 . . . . . . . . . 10  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  -> 
r  Btwn  <. P ,  C >. )
4645anim1i 570 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  ( r  Btwn  <. P ,  C >.  /\  q  Btwn  <. r ,  C >. ) )
47 btwnexch2 30780 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  r  e.  ( EE `  N ) )  /\  ( q  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  (
( r  Btwn  <. P ,  C >.  /\  q  Btwn  <.
r ,  C >. )  ->  q  Btwn  <. P ,  C >. ) )
4844, 46, 47sylc 62 . . . . . . . 8  |-  ( ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  /\  q  Btwn  <. r ,  C >. )  ->  q  Btwn  <. P ,  C >. )
4948ex 435 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  -> 
( q  Btwn  <. r ,  C >.  ->  q  Btwn  <. P ,  C >. ) )
5049anim1d 566 . . . . . 6  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  /\  q  e.  ( EE `  N ) )  -> 
( ( q  Btwn  <.
r ,  C >.  /\  q  Btwn  <. B ,  E >. )  ->  (
q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) ) )
5150reximdva 2900 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  -> 
( E. q  e.  ( EE `  N
) ( q  Btwn  <.
r ,  C >.  /\  q  Btwn  <. B ,  E >. )  ->  E. q  e.  ( EE `  N
) ( q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) ) )
5235, 51mpd 15 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  /\  r  e.  ( EE `  N
)  /\  ( r  Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. ) )  ->  E. q  e.  ( EE `  N ) ( q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) )
5352rexlimdv3a 2919 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  ( E. r  e.  ( EE `  N ) ( r 
Btwn  <. E ,  A >.  /\  r  Btwn  <. P ,  C >. )  ->  E. q  e.  ( EE `  N
) ( q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) ) )
5417, 53mpd 15 . 2  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  /\  ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. ) )  ->  E. q  e.  ( EE `  N
) ( q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) )
5554ex 435 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  P  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  C >.  /\  P  Btwn  <. A ,  D >. )  ->  E. q  e.  ( EE `  N
) ( q  Btwn  <. P ,  C >.  /\  q  Btwn  <. B ,  E >. ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    e. wcel 1868   E.wrex 2776   <.cop 4002   class class class wbr 4420   ` cfv 5597   NNcn 10609   EEcee 24902    Btwn cbtwn 24903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-inf2 8148  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-oadd 7190  df-er 7367  df-map 7478  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-sup 7958  df-oi 8027  df-card 8374  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-seq 12213  df-exp 12272  df-hash 12515  df-cj 13148  df-re 13149  df-im 13150  df-sqrt 13284  df-abs 13285  df-clim 13537  df-sum 13738  df-ee 24905  df-btwn 24906  df-cgr 24907  df-ofs 30740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator