MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trin Structured version   Unicode version

Theorem trin 4536
Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
trin  |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )

Proof of Theorem trin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3669 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
2 trss 4535 . . . . . 6  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
3 trss 4535 . . . . . 6  |-  ( Tr  B  ->  ( x  e.  B  ->  x  C_  B ) )
42, 3im2anan9 833 . . . . 5  |-  ( ( Tr  A  /\  Tr  B )  ->  (
( x  e.  A  /\  x  e.  B
)  ->  ( x  C_  A  /\  x  C_  B ) ) )
51, 4syl5bi 217 . . . 4  |-  ( ( Tr  A  /\  Tr  B )  ->  (
x  e.  ( A  i^i  B )  -> 
( x  C_  A  /\  x  C_  B ) ) )
6 ssin 3702 . . . 4  |-  ( ( x  C_  A  /\  x  C_  B )  <->  x  C_  ( A  i^i  B ) )
75, 6syl6ib 226 . . 3  |-  ( ( Tr  A  /\  Tr  B )  ->  (
x  e.  ( A  i^i  B )  ->  x  C_  ( A  i^i  B ) ) )
87ralrimiv 2853 . 2  |-  ( ( Tr  A  /\  Tr  B )  ->  A. x  e.  ( A  i^i  B
) x  C_  ( A  i^i  B ) )
9 dftr3 4530 . 2  |-  ( Tr  ( A  i^i  B
)  <->  A. x  e.  ( A  i^i  B ) x  C_  ( A  i^i  B ) )
108, 9sylibr 212 1  |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1802   A.wral 2791    i^i cin 3457    C_ wss 3458   Tr wtr 4526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ral 2796  df-v 3095  df-in 3465  df-ss 3472  df-uni 4231  df-tr 4527
This theorem is referenced by:  ordin  4894  tcmin  8170  ingru  9191  gruina  9194  dfon2lem4  29186
  Copyright terms: Public domain W3C validator