MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfil3 Structured version   Unicode version

Theorem trfil3 19596
Description: Conditions for the trace of a filter  L to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trfil3  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  ( Fil `  A )  <->  -.  ( Y  \  A
)  e.  L ) )

Proof of Theorem trfil3
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 trfil2 19595 . 2  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  ( Fil `  A )  <->  A. v  e.  L  ( v  i^i  A
)  =/=  (/) ) )
2 dfral2 2853 . . 3  |-  ( A. v  e.  L  (
v  i^i  A )  =/=  (/)  <->  -.  E. v  e.  L  -.  (
v  i^i  A )  =/=  (/) )
3 nne 2654 . . . . . . . 8  |-  ( -.  ( v  i^i  A
)  =/=  (/)  <->  ( v  i^i  A )  =  (/) )
4 filelss 19560 . . . . . . . . 9  |-  ( ( L  e.  ( Fil `  Y )  /\  v  e.  L )  ->  v  C_  Y )
5 reldisj 3833 . . . . . . . . 9  |-  ( v 
C_  Y  ->  (
( v  i^i  A
)  =  (/)  <->  v  C_  ( Y  \  A ) ) )
64, 5syl 16 . . . . . . . 8  |-  ( ( L  e.  ( Fil `  Y )  /\  v  e.  L )  ->  (
( v  i^i  A
)  =  (/)  <->  v  C_  ( Y  \  A ) ) )
73, 6syl5bb 257 . . . . . . 7  |-  ( ( L  e.  ( Fil `  Y )  /\  v  e.  L )  ->  ( -.  ( v  i^i  A
)  =/=  (/)  <->  v  C_  ( Y  \  A ) ) )
87rexbidva 2865 . . . . . 6  |-  ( L  e.  ( Fil `  Y
)  ->  ( E. v  e.  L  -.  ( v  i^i  A
)  =/=  (/)  <->  E. v  e.  L  v  C_  ( Y  \  A ) ) )
98adantr 465 . . . . 5  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  ( E. v  e.  L  -.  ( v  i^i  A
)  =/=  (/)  <->  E. v  e.  L  v  C_  ( Y  \  A ) ) )
10 difssd 3595 . . . . . 6  |-  ( A 
C_  Y  ->  ( Y  \  A )  C_  Y )
11 elfilss 19584 . . . . . 6  |-  ( ( L  e.  ( Fil `  Y )  /\  ( Y  \  A )  C_  Y )  ->  (
( Y  \  A
)  e.  L  <->  E. v  e.  L  v  C_  ( Y  \  A ) ) )
1210, 11sylan2 474 . . . . 5  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  (
( Y  \  A
)  e.  L  <->  E. v  e.  L  v  C_  ( Y  \  A ) ) )
139, 12bitr4d 256 . . . 4  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  ( E. v  e.  L  -.  ( v  i^i  A
)  =/=  (/)  <->  ( Y  \  A )  e.  L
) )
1413notbid 294 . . 3  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  ( -.  E. v  e.  L  -.  ( v  i^i  A
)  =/=  (/)  <->  -.  ( Y  \  A )  e.  L ) )
152, 14syl5bb 257 . 2  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  ( A. v  e.  L  ( v  i^i  A
)  =/=  (/)  <->  -.  ( Y  \  A )  e.  L ) )
161, 15bitrd 253 1  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  ( Fil `  A )  <->  -.  ( Y  \  A
)  e.  L ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799   E.wrex 2800    \ cdif 3436    i^i cin 3438    C_ wss 3439   (/)c0 3748   ` cfv 5529  (class class class)co 6203   ↾t crest 14481   Filcfil 19553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-rest 14483  df-fbas 17942  df-fg 17943  df-fil 19554
This theorem is referenced by:  fgtr  19598  trufil  19618  flimrest  19691  fclsrest  19732  cfilres  20942  relcmpcmet  20962
  Copyright terms: Public domain W3C validator