MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trel3 Structured version   Visualization version   Unicode version

Theorem trel3 4505
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
trel3  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  B  e.  A ) )

Proof of Theorem trel3
StepHypRef Expression
1 3anass 989 . . 3  |-  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  <->  ( B  e.  C  /\  ( C  e.  D  /\  D  e.  A
) ) )
2 trel 4504 . . . 4  |-  ( Tr  A  ->  ( ( C  e.  D  /\  D  e.  A )  ->  C  e.  A ) )
32anim2d 569 . . 3  |-  ( Tr  A  ->  ( ( B  e.  C  /\  ( C  e.  D  /\  D  e.  A
) )  ->  ( B  e.  C  /\  C  e.  A )
) )
41, 3syl5bi 221 . 2  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  ( B  e.  C  /\  C  e.  A
) ) )
5 trel 4504 . 2  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  A )  ->  B  e.  A ) )
64, 5syld 45 1  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  B  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985    e. wcel 1887   Tr wtr 4497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431
This theorem depends on definitions:  df-bi 189  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-v 3047  df-in 3411  df-ss 3418  df-uni 4199  df-tr 4498
This theorem is referenced by:  ordelord  5445
  Copyright terms: Public domain W3C validator