MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpss Structured version   Visualization version   Unicode version

Theorem tpss 4150
Description: A triplet of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
tpss.1  |-  A  e. 
_V
tpss.2  |-  B  e. 
_V
tpss.3  |-  C  e. 
_V
Assertion
Ref Expression
tpss  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  { A ,  B ,  C }  C_  D )

Proof of Theorem tpss
StepHypRef Expression
1 unss 3620 . 2  |-  ( ( { A ,  B }  C_  D  /\  { C }  C_  D )  <-> 
( { A ,  B }  u.  { C } )  C_  D
)
2 df-3an 993 . . 3  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  ( ( A  e.  D  /\  B  e.  D
)  /\  C  e.  D ) )
3 tpss.1 . . . . 5  |-  A  e. 
_V
4 tpss.2 . . . . 5  |-  B  e. 
_V
53, 4prss 4139 . . . 4  |-  ( ( A  e.  D  /\  B  e.  D )  <->  { A ,  B }  C_  D )
6 tpss.3 . . . . 5  |-  C  e. 
_V
76snss 4109 . . . 4  |-  ( C  e.  D  <->  { C }  C_  D )
85, 7anbi12i 708 . . 3  |-  ( ( ( A  e.  D  /\  B  e.  D
)  /\  C  e.  D )  <->  ( { A ,  B }  C_  D  /\  { C }  C_  D ) )
92, 8bitri 257 . 2  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  ( { A ,  B }  C_  D  /\  { C }  C_  D ) )
10 df-tp 3985 . . 3  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
1110sseq1i 3468 . 2  |-  ( { A ,  B ,  C }  C_  D  <->  ( { A ,  B }  u.  { C } ) 
C_  D )
121, 9, 113bitr4i 285 1  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  { A ,  B ,  C }  C_  D )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    /\ wa 375    /\ w3a 991    e. wcel 1898   _Vcvv 3057    u. cun 3414    C_ wss 3416   {csn 3980   {cpr 3982   {ctp 3984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-v 3059  df-un 3421  df-in 3423  df-ss 3430  df-sn 3981  df-pr 3983  df-tp 3985
This theorem is referenced by:  1cubr  23817  constr3trllem1  25427  rabren3dioph  35703  fourierdlem102  38110  fourierdlem114  38122  nnsum4primesodd  38929  nnsum4primesoddALTV  38930
  Copyright terms: Public domain W3C validator