Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpr2rico Structured version   Unicode version

Theorem tpr2rico 26294
Description: For any point of an open set of the usual topology on  ( RR  X.  RR ) there is an open square which contains that point and is entirely in the open set. This is square is actually a ball by the  (
l ^ +oo ) norm  X. (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypotheses
Ref Expression
tpr2rico.0  |-  J  =  ( topGen `  ran  (,) )
tpr2rico.1  |-  G  =  ( u  e.  RR ,  v  e.  RR  |->  ( u  +  (
_i  x.  v )
) )
tpr2rico.2  |-  B  =  ran  ( x  e. 
ran  (,) ,  y  e. 
ran  (,)  |->  ( x  X.  y ) )
Assertion
Ref Expression
tpr2rico  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. r  e.  B  ( X  e.  r  /\  r  C_  A ) )
Distinct variable groups:    v, u, x, y    x, r, A    B, r    x, G    x, J    x, X    y, r, X
Allowed substitution hints:    A( y, v, u)    B( x, y, v, u)    G( y, v, u, r)    J( y, v, u, r)    X( v, u)

Proof of Theorem tpr2rico
Dummy variables  z  m  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 11296 . . . . . . . . . 10  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
21ixxf 11302 . . . . . . . . 9  |-  (,) :
( RR*  X.  RR* ) --> ~P RR*
3 ffn 5554 . . . . . . . . 9  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR*  ->  (,)  Fn  ( RR*  X.  RR* )
)
42, 3mp1i 12 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  (,)  Fn  ( RR*  X.  RR* ) )
5 elssuni 4116 . . . . . . . . . . . . . 14  |-  ( A  e.  ( J  tX  J )  ->  A  C_ 
U. ( J  tX  J ) )
6 tpr2rico.0 . . . . . . . . . . . . . . . 16  |-  J  =  ( topGen `  ran  (,) )
7 retop 20315 . . . . . . . . . . . . . . . 16  |-  ( topGen ` 
ran  (,) )  e.  Top
86, 7eqeltri 2508 . . . . . . . . . . . . . . 15  |-  J  e. 
Top
9 uniretop 20316 . . . . . . . . . . . . . . . 16  |-  RR  =  U. ( topGen `  ran  (,) )
106unieqi 4095 . . . . . . . . . . . . . . . 16  |-  U. J  =  U. ( topGen `  ran  (,) )
119, 10eqtr4i 2461 . . . . . . . . . . . . . . 15  |-  RR  =  U. J
128, 8, 11, 11txunii 19141 . . . . . . . . . . . . . 14  |-  ( RR 
X.  RR )  = 
U. ( J  tX  J )
135, 12syl6sseqr 3398 . . . . . . . . . . . . 13  |-  ( A  e.  ( J  tX  J )  ->  A  C_  ( RR  X.  RR ) )
1413ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  A  C_  ( RR  X.  RR ) )
15 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  X  e.  A )
1614, 15sseldd 3352 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  X  e.  ( RR  X.  RR ) )
17 xp1st 6601 . . . . . . . . . . 11  |-  ( X  e.  ( RR  X.  RR )  ->  ( 1st `  X )  e.  RR )
1816, 17syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 1st `  X )  e.  RR )
19 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  d  e.  RR+ )
2019rpred 11019 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  d  e.  RR )
2120rehalfcld 10563 . . . . . . . . . 10  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( d  /  2 )  e.  RR )
2218, 21resubcld 9768 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  -  ( d  /  2
) )  e.  RR )
2322rexrd 9425 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  -  ( d  /  2
) )  e.  RR* )
2418, 21readdcld 9405 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  +  ( d  /  2
) )  e.  RR )
2524rexrd 9425 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  +  ( d  /  2
) )  e.  RR* )
26 fnovrn 6233 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  (
( 1st `  X
)  -  ( d  /  2 ) )  e.  RR*  /\  (
( 1st `  X
)  +  ( d  /  2 ) )  e.  RR* )  ->  (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  e.  ran  (,) )
274, 23, 25, 26syl3anc 1218 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  e.  ran  (,) )
28 xp2nd 6602 . . . . . . . . . . 11  |-  ( X  e.  ( RR  X.  RR )  ->  ( 2nd `  X )  e.  RR )
2916, 28syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 2nd `  X )  e.  RR )
3029, 21resubcld 9768 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  -  ( d  /  2
) )  e.  RR )
3130rexrd 9425 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  -  ( d  /  2
) )  e.  RR* )
3229, 21readdcld 9405 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  +  ( d  /  2
) )  e.  RR )
3332rexrd 9425 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  +  ( d  /  2
) )  e.  RR* )
34 fnovrn 6233 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  (
( 2nd `  X
)  -  ( d  /  2 ) )  e.  RR*  /\  (
( 2nd `  X
)  +  ( d  /  2 ) )  e.  RR* )  ->  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  e.  ran  (,) )
354, 31, 33, 34syl3anc 1218 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  e.  ran  (,) )
36 eqidd 2439 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
37 xpeq1 4849 . . . . . . . . 9  |-  ( x  =  ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  ->  ( x  X.  y )  =  ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  y ) )
3837eqeq2d 2449 . . . . . . . 8  |-  ( x  =  ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  ->  ( (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  =  ( x  X.  y )  <-> 
( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  y ) ) )
39 xpeq2 4850 . . . . . . . . 9  |-  ( y  =  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  y
)  =  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
4039eqeq2d 2449 . . . . . . . 8  |-  ( y  =  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) )  ->  ( (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  y )  <->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) ) )
4138, 40rspc2ev 3076 . . . . . . 7  |-  ( ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  e.  ran  (,)  /\  ( ( ( 2nd `  X )  -  (
d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  / 
2 ) ) )  e.  ran  (,)  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  E. x  e.  ran  (,)
E. y  e.  ran  (,) ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( x  X.  y
) )
4227, 35, 36, 41syl3anc 1218 . . . . . 6  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  E. x  e.  ran  (,) E. y  e.  ran  (,) ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( x  X.  y
) )
43 eqid 2438 . . . . . . 7  |-  ( x  e.  ran  (,) , 
y  e.  ran  (,)  |->  ( x  X.  y
) )  =  ( x  e.  ran  (,) ,  y  e.  ran  (,)  |->  ( x  X.  y
) )
44 vex 2970 . . . . . . . 8  |-  x  e. 
_V
45 vex 2970 . . . . . . . 8  |-  y  e. 
_V
4644, 45xpex 6503 . . . . . . 7  |-  ( x  X.  y )  e. 
_V
4743, 46elrnmpt2 6198 . . . . . 6  |-  ( ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  e.  ran  ( x  e.  ran  (,)
,  y  e.  ran  (,)  |->  ( x  X.  y
) )  <->  E. x  e.  ran  (,) E. y  e.  ran  (,) ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( x  X.  y
) )
4842, 47sylibr 212 . . . . 5  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e. 
ran  ( x  e. 
ran  (,) ,  y  e. 
ran  (,)  |->  ( x  X.  y ) ) )
49 tpr2rico.2 . . . . 5  |-  B  =  ran  ( x  e. 
ran  (,) ,  y  e. 
ran  (,)  |->  ( x  X.  y ) )
5048, 49syl6eleqr 2529 . . . 4  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B )
5150ralrimiva 2794 . . 3  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  A. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B )
52 xpss 4941 . . . . . . 7  |-  ( RR 
X.  RR )  C_  ( _V  X.  _V )
5352, 16sseldi 3349 . . . . . 6  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  X  e.  ( _V  X.  _V )
)
5418rexrd 9425 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 1st `  X )  e.  RR* )
5519rphalfcld 11031 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( d  /  2 )  e.  RR+ )
5618, 55ltsubrpd 11047 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  -  ( d  /  2
) )  <  ( 1st `  X ) )
5718, 55ltaddrpd 11048 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 1st `  X )  <  (
( 1st `  X
)  +  ( d  /  2 ) ) )
58 elioo1 11332 . . . . . . . . 9  |-  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) )  e.  RR*  /\  (
( 1st `  X
)  +  ( d  /  2 ) )  e.  RR* )  ->  (
( 1st `  X
)  e.  ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  <->  ( ( 1st `  X )  e. 
RR*  /\  ( ( 1st `  X )  -  ( d  /  2
) )  <  ( 1st `  X )  /\  ( 1st `  X )  <  ( ( 1st `  X )  +  ( d  /  2 ) ) ) ) )
5923, 25, 58syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  e.  ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  <-> 
( ( 1st `  X
)  e.  RR*  /\  (
( 1st `  X
)  -  ( d  /  2 ) )  <  ( 1st `  X
)  /\  ( 1st `  X )  <  (
( 1st `  X
)  +  ( d  /  2 ) ) ) ) )
6054, 56, 57, 59mpbir3and 1171 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 1st `  X )  e.  ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) ) )
6129rexrd 9425 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 2nd `  X )  e.  RR* )
6229, 55ltsubrpd 11047 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  -  ( d  /  2
) )  <  ( 2nd `  X ) )
6329, 55ltaddrpd 11048 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 2nd `  X )  <  (
( 2nd `  X
)  +  ( d  /  2 ) ) )
64 elioo1 11332 . . . . . . . . 9  |-  ( ( ( ( 2nd `  X
)  -  ( d  /  2 ) )  e.  RR*  /\  (
( 2nd `  X
)  +  ( d  /  2 ) )  e.  RR* )  ->  (
( 2nd `  X
)  e.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  <->  ( ( 2nd `  X )  e. 
RR*  /\  ( ( 2nd `  X )  -  ( d  /  2
) )  <  ( 2nd `  X )  /\  ( 2nd `  X )  <  ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
6531, 33, 64syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  e.  ( ( ( 2nd `  X )  -  (
d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  / 
2 ) ) )  <-> 
( ( 2nd `  X
)  e.  RR*  /\  (
( 2nd `  X
)  -  ( d  /  2 ) )  <  ( 2nd `  X
)  /\  ( 2nd `  X )  <  (
( 2nd `  X
)  +  ( d  /  2 ) ) ) ) )
6661, 62, 63, 65mpbir3and 1171 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 2nd `  X )  e.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )
6760, 66jca 532 . . . . . 6  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  e.  ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  /\  ( 2nd `  X
)  e.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
68 elxp7 6604 . . . . . 6  |-  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  <->  ( X  e.  ( _V  X.  _V )  /\  ( ( 1st `  X )  e.  ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  /\  ( 2nd `  X )  e.  ( ( ( 2nd `  X )  -  (
d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  / 
2 ) ) ) ) ) )
6953, 67, 68sylanbrc 664 . . . . 5  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  X  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
7069ralrimiva 2794 . . . 4  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  A. d  e.  RR+  X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
71 mnfle 11105 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  X
)  -  ( d  /  2 ) )  e.  RR*  -> -oo  <_  ( ( 1st `  X
)  -  ( d  /  2 ) ) )
7223, 71syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  -> -oo  <_  (
( 1st `  X
)  -  ( d  /  2 ) ) )
73 pnfge 11102 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  X
)  +  ( d  /  2 ) )  e.  RR*  ->  ( ( 1st `  X )  +  ( d  / 
2 ) )  <_ +oo )
7425, 73syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  +  ( d  /  2
) )  <_ +oo )
75 mnfxr 11086 . . . . . . . . . . . . . . . . . 18  |- -oo  e.  RR*
76 pnfxr 11084 . . . . . . . . . . . . . . . . . 18  |- +oo  e.  RR*
77 ioossioo 26014 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  /\  ( -oo  <_  ( ( 1st `  X )  -  (
d  /  2 ) )  /\  ( ( 1st `  X )  +  ( d  / 
2 ) )  <_ +oo ) )  ->  (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  C_  ( -oo (,) +oo ) )
7875, 76, 77mpanl12 682 . . . . . . . . . . . . . . . . 17  |-  ( ( -oo  <_  ( ( 1st `  X )  -  ( d  /  2
) )  /\  (
( 1st `  X
)  +  ( d  /  2 ) )  <_ +oo )  ->  (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  C_  ( -oo (,) +oo ) )
7972, 74, 78syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  C_  ( -oo (,) +oo ) )
80 ioomax 11362 . . . . . . . . . . . . . . . 16  |-  ( -oo (,) +oo )  =  RR
8179, 80syl6sseq 3397 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  C_  RR )
82 mnfle 11105 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  X
)  -  ( d  /  2 ) )  e.  RR*  -> -oo  <_  ( ( 2nd `  X
)  -  ( d  /  2 ) ) )
8331, 82syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  -> -oo  <_  (
( 2nd `  X
)  -  ( d  /  2 ) ) )
84 pnfge 11102 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  X
)  +  ( d  /  2 ) )  e.  RR*  ->  ( ( 2nd `  X )  +  ( d  / 
2 ) )  <_ +oo )
8533, 84syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  +  ( d  /  2
) )  <_ +oo )
86 ioossioo 26014 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  /\  ( -oo  <_  ( ( 2nd `  X )  -  (
d  /  2 ) )  /\  ( ( 2nd `  X )  +  ( d  / 
2 ) )  <_ +oo ) )  ->  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  ( -oo (,) +oo ) )
8775, 76, 86mpanl12 682 . . . . . . . . . . . . . . . . 17  |-  ( ( -oo  <_  ( ( 2nd `  X )  -  ( d  /  2
) )  /\  (
( 2nd `  X
)  +  ( d  /  2 ) )  <_ +oo )  ->  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  ( -oo (,) +oo ) )
8883, 85, 87syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  ( -oo (,) +oo ) )
8988, 80syl6sseq 3397 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  RR )
90 xpss12 4940 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) ) 
C_  RR  /\  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  RR )  ->  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( RR  X.  RR ) )
9181, 89, 90syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( RR  X.  RR ) )
9291sselda 3351 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  x  e.  ( RR  X.  RR ) )
9392expcom 435 . . . . . . . . . . . 12  |-  ( x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  ->  x  e.  ( RR  X.  RR ) ) )
9493ancld 553 . . . . . . . . . . 11  |-  ( x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  ->  (
( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) ) ) )
9594imdistanri 691 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) ) )
9613adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ( J 
tX  J )  /\  ( X  e.  A  /\  d  e.  RR+  /\  x  e.  ( RR  X.  RR ) ) )  ->  A  C_  ( RR  X.  RR ) )
97 simpr1 994 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ( J 
tX  J )  /\  ( X  e.  A  /\  d  e.  RR+  /\  x  e.  ( RR  X.  RR ) ) )  ->  X  e.  A )
9896, 97sseldd 3352 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( J 
tX  J )  /\  ( X  e.  A  /\  d  e.  RR+  /\  x  e.  ( RR  X.  RR ) ) )  ->  X  e.  ( RR  X.  RR ) )
99983anassrs 1209 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  X  e.  ( RR  X.  RR ) )
100 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  x  e.  ( RR  X.  RR ) )
101 simplr 754 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  d  e.  RR+ )
102101rphalfcld 11031 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
d  /  2 )  e.  RR+ )
103 tpr2rico.1 . . . . . . . . . . . . . . 15  |-  G  =  ( u  e.  RR ,  v  e.  RR  |->  ( u  +  (
_i  x.  v )
) )
104103cnre2csqima 26293 . . . . . . . . . . . . . 14  |-  ( ( X  e.  ( RR 
X.  RR )  /\  x  e.  ( RR  X.  RR )  /\  (
d  /  2 )  e.  RR+ )  ->  (
x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) ) ) )
10599, 100, 102, 104syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) ) ) )
106 eqid 2438 . . . . . . . . . . . . . . . . . . . . 21  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
107103, 6, 106cnrehmeo 20500 . . . . . . . . . . . . . . . . . . . 20  |-  G  e.  ( ( J  tX  J ) Homeo ( TopOpen ` fld )
)
108106cnfldtopon 20337 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
109108toponunii 18512 . . . . . . . . . . . . . . . . . . . . 21  |-  CC  =  U. ( TopOpen ` fld )
11012, 109hmeof1o 19312 . . . . . . . . . . . . . . . . . . . 20  |-  ( G  e.  ( ( J 
tX  J ) Homeo (
TopOpen ` fld ) )  ->  G : ( RR  X.  RR ) -1-1-onto-> CC )
111 f1of 5636 . . . . . . . . . . . . . . . . . . . 20  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  G :
( RR  X.  RR )
--> CC )
112107, 110, 111mp2b 10 . . . . . . . . . . . . . . . . . . 19  |-  G :
( RR  X.  RR )
--> CC
113112a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  G : ( RR  X.  RR ) --> CC )
114113, 99ffvelrnd 5839 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  ( G `  X )  e.  CC )
115112a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  G :
( RR  X.  RR )
--> CC )
116115ffvelrnda 5838 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  ( G `  x )  e.  CC )
117 sqsscirc2 26291 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G `  X )  e.  CC  /\  ( G `  x
)  e.  CC )  /\  d  e.  RR+ )  ->  ( ( ( abs `  ( Re
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
)  /\  ( abs `  ( Im `  (
( G `  x
)  -  ( G `
 X ) ) ) )  <  (
d  /  2 ) )  ->  ( abs `  ( ( G `  x )  -  ( G `  X )
) )  <  d
) )
118114, 116, 101, 117syl21anc 1217 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( ( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) )  ->  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
) )
119118imp 429 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  (
( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) ) )  -> 
( abs `  (
( G `  x
)  -  ( G `
 X ) ) )  <  d )
120101rpxrd 11020 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  d  e.  RR* )
121120adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  d  e.  RR* )
122 cnxmet 20327 . . . . . . . . . . . . . . . . 17  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
123121, 122jctil 537 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  d  e.  RR* ) )
124114adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( G `  X )  e.  CC )
125116adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( G `  x )  e.  CC )
126124, 125jca 532 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( ( G `  X )  e.  CC  /\  ( G `
 x )  e.  CC ) )
127 eqid 2438 . . . . . . . . . . . . . . . . . . 19  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
128127cnmetdval 20325 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G `  x
)  e.  CC  /\  ( G `  X )  e.  CC )  -> 
( ( G `  x ) ( abs 
o.  -  ) ( G `  X )
)  =  ( abs `  ( ( G `  x )  -  ( G `  X )
) ) )
129125, 124, 128syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( ( G `  x )
( abs  o.  -  )
( G `  X
) )  =  ( abs `  ( ( G `  x )  -  ( G `  X ) ) ) )
130 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( abs `  ( ( G `  x )  -  ( G `  X )
) )  <  d
)
131129, 130eqbrtrd 4307 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( ( G `  x )
( abs  o.  -  )
( G `  X
) )  <  d
)
132 elbl3 19942 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  d  e.  RR* )  /\  ( ( G `
 X )  e.  CC  /\  ( G `
 x )  e.  CC ) )  -> 
( ( G `  x )  e.  ( ( G `  X
) ( ball `  ( abs  o.  -  ) ) d )  <->  ( ( G `  x )
( abs  o.  -  )
( G `  X
) )  <  d
) )
133132biimpar 485 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( abs 
o.  -  )  e.  ( *Met `  CC )  /\  d  e.  RR* )  /\  ( ( G `
 X )  e.  CC  /\  ( G `
 x )  e.  CC ) )  /\  ( ( G `  x ) ( abs 
o.  -  ) ( G `  X )
)  <  d )  ->  ( G `  x
)  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )
134123, 126, 131, 133syl21anc 1217 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( G `  x )  e.  ( ( G `  X
) ( ball `  ( abs  o.  -  ) ) d ) )
135119, 134syldan 470 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  (
( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) ) )  -> 
( G `  x
)  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )
136135ex 434 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( ( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) )  ->  ( G `  x )  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
137105, 136syld 44 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( G `  x
)  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
138 f1ocnv 5648 . . . . . . . . . . . . . . 15  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  `' G : CC -1-1-onto-> ( RR  X.  RR ) )
139107, 110, 138mp2b 10 . . . . . . . . . . . . . 14  |-  `' G : CC -1-1-onto-> ( RR  X.  RR )
140 f1ofun 5638 . . . . . . . . . . . . . 14  |-  ( `' G : CC -1-1-onto-> ( RR  X.  RR )  ->  Fun  `' G
)
141139, 140ax-mp 5 . . . . . . . . . . . . 13  |-  Fun  `' G
142 f1odm 5640 . . . . . . . . . . . . . . 15  |-  ( `' G : CC -1-1-onto-> ( RR  X.  RR )  ->  dom  `' G  =  CC )
143139, 142ax-mp 5 . . . . . . . . . . . . . 14  |-  dom  `' G  =  CC
144116, 143syl6eleqr 2529 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  ( G `  x )  e.  dom  `' G )
145 funfvima 5947 . . . . . . . . . . . . 13  |-  ( ( Fun  `' G  /\  ( G `  x )  e.  dom  `' G
)  ->  ( ( G `  x )  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d )  ->  ( `' G `  ( G `  x
) )  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) ) )
146141, 144, 145sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( G `  x
)  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d )  ->  ( `' G `  ( G `
 x ) )  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) ) )
147107, 110mp1i 12 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  G : ( RR  X.  RR ) -1-1-onto-> CC )
148 f1ocnvfv1 5978 . . . . . . . . . . . . . . 15  |-  ( ( G : ( RR 
X.  RR ) -1-1-onto-> CC  /\  x  e.  ( RR  X.  RR ) )  -> 
( `' G `  ( G `  x ) )  =  x )
149147, 100, 148syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  ( `' G `  ( G `
 x ) )  =  x )
150149eleq1d 2504 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( `' G `  ( G `  x ) )  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  <->  x  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) ) )
151150biimpd 207 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( `' G `  ( G `  x ) )  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  ->  x  e.  ( `' G " ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d ) ) ) )
152137, 146, 1513syld 55 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  ->  x  e.  ( `' G " ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d ) ) ) )
153152imp 429 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  x  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
15495, 153syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  x  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
155154ex 434 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  ->  x  e.  ( `' G " ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d ) ) ) )
156155ssrdv 3357 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
157156ralrimiva 2794 . . . . . 6  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  A. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
158103mpt2fun 6187 . . . . . . . . . 10  |-  Fun  G
159158a1i 11 . . . . . . . . 9  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  Fun  G )
16013sselda 3351 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  X  e.  ( RR 
X.  RR ) )
161 f1odm 5640 . . . . . . . . . . 11  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  dom  G  =  ( RR  X.  RR ) )
162107, 110, 161mp2b 10 . . . . . . . . . 10  |-  dom  G  =  ( RR  X.  RR )
163160, 162syl6eleqr 2529 . . . . . . . . 9  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  X  e.  dom  G
)
164 simpr 461 . . . . . . . . 9  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  X  e.  A )
165 funfvima 5947 . . . . . . . . . 10  |-  ( ( Fun  G  /\  X  e.  dom  G )  -> 
( X  e.  A  ->  ( G `  X
)  e.  ( G
" A ) ) )
166165imp 429 . . . . . . . . 9  |-  ( ( ( Fun  G  /\  X  e.  dom  G )  /\  X  e.  A
)  ->  ( G `  X )  e.  ( G " A ) )
167159, 163, 164, 166syl21anc 1217 . . . . . . . 8  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  ( G `  X
)  e.  ( G
" A ) )
168 hmeoima 19313 . . . . . . . . . . 11  |-  ( ( G  e.  ( ( J  tX  J )
Homeo ( TopOpen ` fld ) )  /\  A  e.  ( J  tX  J
) )  ->  ( G " A )  e.  ( TopOpen ` fld ) )
169107, 168mpan 670 . . . . . . . . . 10  |-  ( A  e.  ( J  tX  J )  ->  ( G " A )  e.  ( TopOpen ` fld ) )
170106cnfldtopn 20336 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
171170elmopn2 19995 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  e.  ( *Met `  CC )  ->  ( ( G " A )  e.  ( TopOpen ` fld )  <->  ( ( G
" A )  C_  CC  /\  A. m  e.  ( G " A
) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) ) ) )
172122, 171ax-mp 5 . . . . . . . . . . 11  |-  ( ( G " A )  e.  ( TopOpen ` fld )  <->  ( ( G
" A )  C_  CC  /\  A. m  e.  ( G " A
) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) ) )
173172simprbi 464 . . . . . . . . . 10  |-  ( ( G " A )  e.  ( TopOpen ` fld )  ->  A. m  e.  ( G " A
) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
174169, 173syl 16 . . . . . . . . 9  |-  ( A  e.  ( J  tX  J )  ->  A. m  e.  ( G " A
) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
175174adantr 465 . . . . . . . 8  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  A. m  e.  ( G " A ) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
176 oveq1 6093 . . . . . . . . . . 11  |-  ( m  =  ( G `  X )  ->  (
m ( ball `  ( abs  o.  -  ) ) d )  =  ( ( G `  X
) ( ball `  ( abs  o.  -  ) ) d ) )
177176sseq1d 3378 . . . . . . . . . 10  |-  ( m  =  ( G `  X )  ->  (
( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A )  <->  ( ( G `  X )
( ball `  ( abs  o. 
-  ) ) d )  C_  ( G " A ) ) )
178177rexbidv 2731 . . . . . . . . 9  |-  ( m  =  ( G `  X )  ->  ( E. d  e.  RR+  (
m ( ball `  ( abs  o.  -  ) ) d )  C_  ( G " A )  <->  E. d  e.  RR+  ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d )  C_  ( G " A ) ) )
179178rspcva 3066 . . . . . . . 8  |-  ( ( ( G `  X
)  e.  ( G
" A )  /\  A. m  e.  ( G
" A ) E. d  e.  RR+  (
m ( ball `  ( abs  o.  -  ) ) d )  C_  ( G " A ) )  ->  E. d  e.  RR+  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
180167, 175, 179syl2anc 661 . . . . . . 7  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
181 imass2 5199 . . . . . . . . . 10  |-  ( ( ( G `  X
) ( ball `  ( abs  o.  -  ) ) d )  C_  ( G " A )  -> 
( `' G "
( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  ( `' G " ( G " A ) ) )
182 f1of1 5635 . . . . . . . . . . . . 13  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  G :
( RR  X.  RR ) -1-1-> CC )
183107, 110, 182mp2b 10 . . . . . . . . . . . 12  |-  G :
( RR  X.  RR ) -1-1-> CC
184 f1imacnv 5652 . . . . . . . . . . . 12  |-  ( ( G : ( RR 
X.  RR ) -1-1-> CC  /\  A  C_  ( RR  X.  RR ) )  -> 
( `' G "
( G " A
) )  =  A )
185183, 13, 184sylancr 663 . . . . . . . . . . 11  |-  ( A  e.  ( J  tX  J )  ->  ( `' G " ( G
" A ) )  =  A )
186185sseq2d 3379 . . . . . . . . . 10  |-  ( A  e.  ( J  tX  J )  ->  (
( `' G "
( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  ( `' G " ( G " A ) )  <->  ( `' G " ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d ) )  C_  A
) )
187181, 186syl5ib 219 . . . . . . . . 9  |-  ( A  e.  ( J  tX  J )  ->  (
( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A )  ->  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A ) )
188187reximdv 2822 . . . . . . . 8  |-  ( A  e.  ( J  tX  J )  ->  ( E. d  e.  RR+  (
( G `  X
) ( ball `  ( abs  o.  -  ) ) d )  C_  ( G " A )  ->  E. d  e.  RR+  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A ) )
189188adantr 465 . . . . . . 7  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  ( E. d  e.  RR+  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A )  ->  E. d  e.  RR+  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )
)
190180, 189mpd 15 . . . . . 6  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )
191 r19.29 2852 . . . . . 6  |-  ( ( A. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  E. d  e.  RR+  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )  ->  E. d  e.  RR+  ( ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A ) )
192157, 190, 191syl2anc 661 . . . . 5  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A ) )
193 sstr 3359 . . . . . 6  |-  ( ( ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )  ->  (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  C_  A
)
194193reximi 2818 . . . . 5  |-  ( E. d  e.  RR+  (
( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )  ->  E. d  e.  RR+  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A )
195192, 194syl 16 . . . 4  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A )
196 r19.29 2852 . . . 4  |-  ( ( A. d  e.  RR+  X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  E. d  e.  RR+  (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  C_  A
)  ->  E. d  e.  RR+  ( X  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) )
19770, 195, 196syl2anc 661 . . 3  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( X  e.  (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  /\  (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  C_  A
) )
198 r19.29 2852 . . 3  |-  ( ( A. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  E. d  e.  RR+  ( X  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) )  ->  E. d  e.  RR+  (
( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) ) )
19951, 197, 198syl2anc 661 . 2  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) ) )
200 eleq2 2499 . . . . 5  |-  ( r  =  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( X  e.  r  <-> 
X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) ) )
201 sseq1 3372 . . . . 5  |-  ( r  =  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( r  C_  A  <->  ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  C_  A
) )
202200, 201anbi12d 710 . . . 4  |-  ( r  =  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( X  e.  r  /\  r  C_  A )  <->  ( X  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) ) )
203202rspcev 3068 . . 3  |-  ( ( ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) )  ->  E. r  e.  B  ( X  e.  r  /\  r  C_  A ) )
204203rexlimivw 2832 . 2  |-  ( E. d  e.  RR+  (
( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) )  ->  E. r  e.  B  ( X  e.  r  /\  r  C_  A ) )
205199, 204syl 16 1  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. r  e.  B  ( X  e.  r  /\  r  C_  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710   E.wrex 2711   _Vcvv 2967    C_ wss 3323   ~Pcpw 3855   U.cuni 4086   class class class wbr 4287    X. cxp 4833   `'ccnv 4834   dom cdm 4835   ran crn 4836   "cima 4838    o. ccom 4839   Fun wfun 5407    Fn wfn 5408   -->wf 5409   -1-1->wf1 5410   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088   1stc1st 6570   2ndc2nd 6571   CCcc 9272   RRcr 9273   _ici 9276    + caddc 9277    x. cmul 9279   +oocpnf 9407   -oocmnf 9408   RR*cxr 9409    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   2c2 10363   RR+crp 10983   (,)cioo 11292   Recre 12578   Imcim 12579   abscabs 12715   TopOpenctopn 14352   topGenctg 14368   *Metcxmt 17776   ballcbl 17778  ℂfldccnfld 17793   Topctop 18473    tX ctx 19108   Homeochmeo 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-icc 11299  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-cnfld 17794  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cn 18806  df-cnp 18807  df-tx 19110  df-hmeo 19303  df-xms 19870  df-ms 19871  df-tms 19872  df-cncf 20429
This theorem is referenced by:  dya2iocnei  26649
  Copyright terms: Public domain W3C validator