Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpr2rico Structured version   Unicode version

Theorem tpr2rico 28047
Description: For any point of an open set of the usual topology on  ( RR  X.  RR ) there is an open square which contains that point and is entirely in the open set. This is square is actually a ball by the  (
l ^ +oo ) norm  X. (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypotheses
Ref Expression
tpr2rico.0  |-  J  =  ( topGen `  ran  (,) )
tpr2rico.1  |-  G  =  ( u  e.  RR ,  v  e.  RR  |->  ( u  +  (
_i  x.  v )
) )
tpr2rico.2  |-  B  =  ran  ( x  e. 
ran  (,) ,  y  e. 
ran  (,)  |->  ( x  X.  y ) )
Assertion
Ref Expression
tpr2rico  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. r  e.  B  ( X  e.  r  /\  r  C_  A ) )
Distinct variable groups:    v, u, x, y    x, r, A    B, r    x, G    x, J    x, X    y, r, X
Allowed substitution hints:    A( y, v, u)    B( x, y, v, u)    G( y, v, u, r)    J( y, v, u, r)    X( v, u)

Proof of Theorem tpr2rico
Dummy variables  z  m  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 11558 . . . . . . . . . 10  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
21ixxf 11564 . . . . . . . . 9  |-  (,) :
( RR*  X.  RR* ) --> ~P RR*
3 ffn 5737 . . . . . . . . 9  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR*  ->  (,)  Fn  ( RR*  X.  RR* )
)
42, 3mp1i 12 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  (,)  Fn  ( RR*  X.  RR* ) )
5 elssuni 4281 . . . . . . . . . . . . . 14  |-  ( A  e.  ( J  tX  J )  ->  A  C_ 
U. ( J  tX  J ) )
6 tpr2rico.0 . . . . . . . . . . . . . . . 16  |-  J  =  ( topGen `  ran  (,) )
7 retop 21393 . . . . . . . . . . . . . . . 16  |-  ( topGen ` 
ran  (,) )  e.  Top
86, 7eqeltri 2541 . . . . . . . . . . . . . . 15  |-  J  e. 
Top
9 uniretop 21394 . . . . . . . . . . . . . . . 16  |-  RR  =  U. ( topGen `  ran  (,) )
106unieqi 4260 . . . . . . . . . . . . . . . 16  |-  U. J  =  U. ( topGen `  ran  (,) )
119, 10eqtr4i 2489 . . . . . . . . . . . . . . 15  |-  RR  =  U. J
128, 8, 11, 11txunii 20219 . . . . . . . . . . . . . 14  |-  ( RR 
X.  RR )  = 
U. ( J  tX  J )
135, 12syl6sseqr 3546 . . . . . . . . . . . . 13  |-  ( A  e.  ( J  tX  J )  ->  A  C_  ( RR  X.  RR ) )
1413ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  A  C_  ( RR  X.  RR ) )
15 simplr 755 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  X  e.  A )
1614, 15sseldd 3500 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  X  e.  ( RR  X.  RR ) )
17 xp1st 6829 . . . . . . . . . . 11  |-  ( X  e.  ( RR  X.  RR )  ->  ( 1st `  X )  e.  RR )
1816, 17syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 1st `  X )  e.  RR )
19 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  d  e.  RR+ )
2019rpred 11281 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  d  e.  RR )
2120rehalfcld 10806 . . . . . . . . . 10  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( d  /  2 )  e.  RR )
2218, 21resubcld 10008 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  -  ( d  /  2
) )  e.  RR )
2322rexrd 9660 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  -  ( d  /  2
) )  e.  RR* )
2418, 21readdcld 9640 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  +  ( d  /  2
) )  e.  RR )
2524rexrd 9660 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  +  ( d  /  2
) )  e.  RR* )
26 fnovrn 6449 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  (
( 1st `  X
)  -  ( d  /  2 ) )  e.  RR*  /\  (
( 1st `  X
)  +  ( d  /  2 ) )  e.  RR* )  ->  (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  e.  ran  (,) )
274, 23, 25, 26syl3anc 1228 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  e.  ran  (,) )
28 xp2nd 6830 . . . . . . . . . . 11  |-  ( X  e.  ( RR  X.  RR )  ->  ( 2nd `  X )  e.  RR )
2916, 28syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 2nd `  X )  e.  RR )
3029, 21resubcld 10008 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  -  ( d  /  2
) )  e.  RR )
3130rexrd 9660 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  -  ( d  /  2
) )  e.  RR* )
3229, 21readdcld 9640 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  +  ( d  /  2
) )  e.  RR )
3332rexrd 9660 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  +  ( d  /  2
) )  e.  RR* )
34 fnovrn 6449 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  (
( 2nd `  X
)  -  ( d  /  2 ) )  e.  RR*  /\  (
( 2nd `  X
)  +  ( d  /  2 ) )  e.  RR* )  ->  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  e.  ran  (,) )
354, 31, 33, 34syl3anc 1228 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  e.  ran  (,) )
36 eqidd 2458 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
37 xpeq1 5022 . . . . . . . . 9  |-  ( x  =  ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  ->  ( x  X.  y )  =  ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  y ) )
3837eqeq2d 2471 . . . . . . . 8  |-  ( x  =  ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  ->  ( (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  =  ( x  X.  y )  <-> 
( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  y ) ) )
39 xpeq2 5023 . . . . . . . . 9  |-  ( y  =  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  y
)  =  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
4039eqeq2d 2471 . . . . . . . 8  |-  ( y  =  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) )  ->  ( (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  y )  <->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) ) )
4138, 40rspc2ev 3221 . . . . . . 7  |-  ( ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  e.  ran  (,)  /\  ( ( ( 2nd `  X )  -  (
d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  / 
2 ) ) )  e.  ran  (,)  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  E. x  e.  ran  (,)
E. y  e.  ran  (,) ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( x  X.  y
) )
4227, 35, 36, 41syl3anc 1228 . . . . . 6  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  E. x  e.  ran  (,) E. y  e.  ran  (,) ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( x  X.  y
) )
43 eqid 2457 . . . . . . 7  |-  ( x  e.  ran  (,) , 
y  e.  ran  (,)  |->  ( x  X.  y
) )  =  ( x  e.  ran  (,) ,  y  e.  ran  (,)  |->  ( x  X.  y
) )
44 vex 3112 . . . . . . . 8  |-  x  e. 
_V
45 vex 3112 . . . . . . . 8  |-  y  e. 
_V
4644, 45xpex 6603 . . . . . . 7  |-  ( x  X.  y )  e. 
_V
4743, 46elrnmpt2 6414 . . . . . 6  |-  ( ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  e.  ran  ( x  e.  ran  (,)
,  y  e.  ran  (,)  |->  ( x  X.  y
) )  <->  E. x  e.  ran  (,) E. y  e.  ran  (,) ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( x  X.  y
) )
4842, 47sylibr 212 . . . . 5  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e. 
ran  ( x  e. 
ran  (,) ,  y  e. 
ran  (,)  |->  ( x  X.  y ) ) )
49 tpr2rico.2 . . . . 5  |-  B  =  ran  ( x  e. 
ran  (,) ,  y  e. 
ran  (,)  |->  ( x  X.  y ) )
5048, 49syl6eleqr 2556 . . . 4  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B )
5150ralrimiva 2871 . . 3  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  A. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B )
52 xpss 5118 . . . . . . 7  |-  ( RR 
X.  RR )  C_  ( _V  X.  _V )
5352, 16sseldi 3497 . . . . . 6  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  X  e.  ( _V  X.  _V )
)
5418rexrd 9660 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 1st `  X )  e.  RR* )
5519rphalfcld 11293 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( d  /  2 )  e.  RR+ )
5618, 55ltsubrpd 11309 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  -  ( d  /  2
) )  <  ( 1st `  X ) )
5718, 55ltaddrpd 11310 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 1st `  X )  <  (
( 1st `  X
)  +  ( d  /  2 ) ) )
58 elioo1 11594 . . . . . . . . 9  |-  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) )  e.  RR*  /\  (
( 1st `  X
)  +  ( d  /  2 ) )  e.  RR* )  ->  (
( 1st `  X
)  e.  ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  <->  ( ( 1st `  X )  e. 
RR*  /\  ( ( 1st `  X )  -  ( d  /  2
) )  <  ( 1st `  X )  /\  ( 1st `  X )  <  ( ( 1st `  X )  +  ( d  /  2 ) ) ) ) )
5923, 25, 58syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  e.  ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  <-> 
( ( 1st `  X
)  e.  RR*  /\  (
( 1st `  X
)  -  ( d  /  2 ) )  <  ( 1st `  X
)  /\  ( 1st `  X )  <  (
( 1st `  X
)  +  ( d  /  2 ) ) ) ) )
6054, 56, 57, 59mpbir3and 1179 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 1st `  X )  e.  ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) ) )
6129rexrd 9660 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 2nd `  X )  e.  RR* )
6229, 55ltsubrpd 11309 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  -  ( d  /  2
) )  <  ( 2nd `  X ) )
6329, 55ltaddrpd 11310 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 2nd `  X )  <  (
( 2nd `  X
)  +  ( d  /  2 ) ) )
64 elioo1 11594 . . . . . . . . 9  |-  ( ( ( ( 2nd `  X
)  -  ( d  /  2 ) )  e.  RR*  /\  (
( 2nd `  X
)  +  ( d  /  2 ) )  e.  RR* )  ->  (
( 2nd `  X
)  e.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  <->  ( ( 2nd `  X )  e. 
RR*  /\  ( ( 2nd `  X )  -  ( d  /  2
) )  <  ( 2nd `  X )  /\  ( 2nd `  X )  <  ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
6531, 33, 64syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  e.  ( ( ( 2nd `  X )  -  (
d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  / 
2 ) ) )  <-> 
( ( 2nd `  X
)  e.  RR*  /\  (
( 2nd `  X
)  -  ( d  /  2 ) )  <  ( 2nd `  X
)  /\  ( 2nd `  X )  <  (
( 2nd `  X
)  +  ( d  /  2 ) ) ) ) )
6661, 62, 63, 65mpbir3and 1179 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 2nd `  X )  e.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )
6760, 66jca 532 . . . . . 6  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  e.  ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  /\  ( 2nd `  X
)  e.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
68 elxp7 6832 . . . . . 6  |-  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  <->  ( X  e.  ( _V  X.  _V )  /\  ( ( 1st `  X )  e.  ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  /\  ( 2nd `  X )  e.  ( ( ( 2nd `  X )  -  (
d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  / 
2 ) ) ) ) ) )
6953, 67, 68sylanbrc 664 . . . . 5  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  X  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
7069ralrimiva 2871 . . . 4  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  A. d  e.  RR+  X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
71 mnfle 11367 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  X
)  -  ( d  /  2 ) )  e.  RR*  -> -oo  <_  ( ( 1st `  X
)  -  ( d  /  2 ) ) )
7223, 71syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  -> -oo  <_  (
( 1st `  X
)  -  ( d  /  2 ) ) )
73 pnfge 11364 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  X
)  +  ( d  /  2 ) )  e.  RR*  ->  ( ( 1st `  X )  +  ( d  / 
2 ) )  <_ +oo )
7425, 73syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  +  ( d  /  2
) )  <_ +oo )
75 mnfxr 11348 . . . . . . . . . . . . . . . . . 18  |- -oo  e.  RR*
76 pnfxr 11346 . . . . . . . . . . . . . . . . . 18  |- +oo  e.  RR*
77 ioossioo 11641 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  /\  ( -oo  <_  ( ( 1st `  X )  -  (
d  /  2 ) )  /\  ( ( 1st `  X )  +  ( d  / 
2 ) )  <_ +oo ) )  ->  (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  C_  ( -oo (,) +oo ) )
7875, 76, 77mpanl12 682 . . . . . . . . . . . . . . . . 17  |-  ( ( -oo  <_  ( ( 1st `  X )  -  ( d  /  2
) )  /\  (
( 1st `  X
)  +  ( d  /  2 ) )  <_ +oo )  ->  (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  C_  ( -oo (,) +oo ) )
7972, 74, 78syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  C_  ( -oo (,) +oo ) )
80 ioomax 11624 . . . . . . . . . . . . . . . 16  |-  ( -oo (,) +oo )  =  RR
8179, 80syl6sseq 3545 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  C_  RR )
82 mnfle 11367 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  X
)  -  ( d  /  2 ) )  e.  RR*  -> -oo  <_  ( ( 2nd `  X
)  -  ( d  /  2 ) ) )
8331, 82syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  -> -oo  <_  (
( 2nd `  X
)  -  ( d  /  2 ) ) )
84 pnfge 11364 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  X
)  +  ( d  /  2 ) )  e.  RR*  ->  ( ( 2nd `  X )  +  ( d  / 
2 ) )  <_ +oo )
8533, 84syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  +  ( d  /  2
) )  <_ +oo )
86 ioossioo 11641 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  /\  ( -oo  <_  ( ( 2nd `  X )  -  (
d  /  2 ) )  /\  ( ( 2nd `  X )  +  ( d  / 
2 ) )  <_ +oo ) )  ->  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  ( -oo (,) +oo ) )
8775, 76, 86mpanl12 682 . . . . . . . . . . . . . . . . 17  |-  ( ( -oo  <_  ( ( 2nd `  X )  -  ( d  /  2
) )  /\  (
( 2nd `  X
)  +  ( d  /  2 ) )  <_ +oo )  ->  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  ( -oo (,) +oo ) )
8883, 85, 87syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  ( -oo (,) +oo ) )
8988, 80syl6sseq 3545 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  RR )
90 xpss12 5117 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) ) 
C_  RR  /\  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  RR )  ->  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( RR  X.  RR ) )
9181, 89, 90syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( RR  X.  RR ) )
9291sselda 3499 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  x  e.  ( RR  X.  RR ) )
9392expcom 435 . . . . . . . . . . . 12  |-  ( x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  ->  x  e.  ( RR  X.  RR ) ) )
9493ancld 553 . . . . . . . . . . 11  |-  ( x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  ->  (
( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) ) ) )
9594imdistanri 691 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) ) )
9613adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ( J 
tX  J )  /\  ( X  e.  A  /\  d  e.  RR+  /\  x  e.  ( RR  X.  RR ) ) )  ->  A  C_  ( RR  X.  RR ) )
97 simpr1 1002 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ( J 
tX  J )  /\  ( X  e.  A  /\  d  e.  RR+  /\  x  e.  ( RR  X.  RR ) ) )  ->  X  e.  A )
9896, 97sseldd 3500 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( J 
tX  J )  /\  ( X  e.  A  /\  d  e.  RR+  /\  x  e.  ( RR  X.  RR ) ) )  ->  X  e.  ( RR  X.  RR ) )
99983anassrs 1218 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  X  e.  ( RR  X.  RR ) )
100 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  x  e.  ( RR  X.  RR ) )
101 simplr 755 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  d  e.  RR+ )
102101rphalfcld 11293 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
d  /  2 )  e.  RR+ )
103 tpr2rico.1 . . . . . . . . . . . . . . 15  |-  G  =  ( u  e.  RR ,  v  e.  RR  |->  ( u  +  (
_i  x.  v )
) )
104103cnre2csqima 28046 . . . . . . . . . . . . . 14  |-  ( ( X  e.  ( RR 
X.  RR )  /\  x  e.  ( RR  X.  RR )  /\  (
d  /  2 )  e.  RR+ )  ->  (
x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) ) ) )
10599, 100, 102, 104syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) ) ) )
106 eqid 2457 . . . . . . . . . . . . . . . . . . . . 21  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
107103, 6, 106cnrehmeo 21578 . . . . . . . . . . . . . . . . . . . 20  |-  G  e.  ( ( J  tX  J ) Homeo ( TopOpen ` fld )
)
108106cnfldtopon 21415 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
109108toponunii 19559 . . . . . . . . . . . . . . . . . . . . 21  |-  CC  =  U. ( TopOpen ` fld )
11012, 109hmeof1o 20390 . . . . . . . . . . . . . . . . . . . 20  |-  ( G  e.  ( ( J 
tX  J ) Homeo (
TopOpen ` fld ) )  ->  G : ( RR  X.  RR ) -1-1-onto-> CC )
111 f1of 5822 . . . . . . . . . . . . . . . . . . . 20  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  G :
( RR  X.  RR )
--> CC )
112107, 110, 111mp2b 10 . . . . . . . . . . . . . . . . . . 19  |-  G :
( RR  X.  RR )
--> CC
113112a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  G : ( RR  X.  RR ) --> CC )
114113, 99ffvelrnd 6033 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  ( G `  X )  e.  CC )
115112a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  G :
( RR  X.  RR )
--> CC )
116115ffvelrnda 6032 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  ( G `  x )  e.  CC )
117 sqsscirc2 28044 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G `  X )  e.  CC  /\  ( G `  x
)  e.  CC )  /\  d  e.  RR+ )  ->  ( ( ( abs `  ( Re
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
)  /\  ( abs `  ( Im `  (
( G `  x
)  -  ( G `
 X ) ) ) )  <  (
d  /  2 ) )  ->  ( abs `  ( ( G `  x )  -  ( G `  X )
) )  <  d
) )
118114, 116, 101, 117syl21anc 1227 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( ( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) )  ->  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
) )
119118imp 429 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  (
( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) ) )  -> 
( abs `  (
( G `  x
)  -  ( G `
 X ) ) )  <  d )
120101rpxrd 11282 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  d  e.  RR* )
121120adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  d  e.  RR* )
122 cnxmet 21405 . . . . . . . . . . . . . . . . 17  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
123121, 122jctil 537 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  d  e.  RR* ) )
124114adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( G `  X )  e.  CC )
125116adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( G `  x )  e.  CC )
126124, 125jca 532 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( ( G `  X )  e.  CC  /\  ( G `
 x )  e.  CC ) )
127 eqid 2457 . . . . . . . . . . . . . . . . . . 19  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
128127cnmetdval 21403 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G `  x
)  e.  CC  /\  ( G `  X )  e.  CC )  -> 
( ( G `  x ) ( abs 
o.  -  ) ( G `  X )
)  =  ( abs `  ( ( G `  x )  -  ( G `  X )
) ) )
129125, 124, 128syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( ( G `  x )
( abs  o.  -  )
( G `  X
) )  =  ( abs `  ( ( G `  x )  -  ( G `  X ) ) ) )
130 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( abs `  ( ( G `  x )  -  ( G `  X )
) )  <  d
)
131129, 130eqbrtrd 4476 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( ( G `  x )
( abs  o.  -  )
( G `  X
) )  <  d
)
132 elbl3 21020 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  d  e.  RR* )  /\  ( ( G `
 X )  e.  CC  /\  ( G `
 x )  e.  CC ) )  -> 
( ( G `  x )  e.  ( ( G `  X
) ( ball `  ( abs  o.  -  ) ) d )  <->  ( ( G `  x )
( abs  o.  -  )
( G `  X
) )  <  d
) )
133132biimpar 485 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( abs 
o.  -  )  e.  ( *Met `  CC )  /\  d  e.  RR* )  /\  ( ( G `
 X )  e.  CC  /\  ( G `
 x )  e.  CC ) )  /\  ( ( G `  x ) ( abs 
o.  -  ) ( G `  X )
)  <  d )  ->  ( G `  x
)  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )
134123, 126, 131, 133syl21anc 1227 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( G `  x )  e.  ( ( G `  X
) ( ball `  ( abs  o.  -  ) ) d ) )
135119, 134syldan 470 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  (
( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) ) )  -> 
( G `  x
)  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )
136135ex 434 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( ( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) )  ->  ( G `  x )  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
137105, 136syld 44 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( G `  x
)  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
138 f1ocnv 5834 . . . . . . . . . . . . . . 15  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  `' G : CC -1-1-onto-> ( RR  X.  RR ) )
139107, 110, 138mp2b 10 . . . . . . . . . . . . . 14  |-  `' G : CC -1-1-onto-> ( RR  X.  RR )
140 f1ofun 5824 . . . . . . . . . . . . . 14  |-  ( `' G : CC -1-1-onto-> ( RR  X.  RR )  ->  Fun  `' G
)
141139, 140ax-mp 5 . . . . . . . . . . . . 13  |-  Fun  `' G
142 f1odm 5826 . . . . . . . . . . . . . . 15  |-  ( `' G : CC -1-1-onto-> ( RR  X.  RR )  ->  dom  `' G  =  CC )
143139, 142ax-mp 5 . . . . . . . . . . . . . 14  |-  dom  `' G  =  CC
144116, 143syl6eleqr 2556 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  ( G `  x )  e.  dom  `' G )
145 funfvima 6148 . . . . . . . . . . . . 13  |-  ( ( Fun  `' G  /\  ( G `  x )  e.  dom  `' G
)  ->  ( ( G `  x )  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d )  ->  ( `' G `  ( G `  x
) )  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) ) )
146141, 144, 145sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( G `  x
)  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d )  ->  ( `' G `  ( G `
 x ) )  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) ) )
147107, 110mp1i 12 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  G : ( RR  X.  RR ) -1-1-onto-> CC )
148 f1ocnvfv1 6183 . . . . . . . . . . . . . . 15  |-  ( ( G : ( RR 
X.  RR ) -1-1-onto-> CC  /\  x  e.  ( RR  X.  RR ) )  -> 
( `' G `  ( G `  x ) )  =  x )
149147, 100, 148syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  ( `' G `  ( G `
 x ) )  =  x )
150149eleq1d 2526 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( `' G `  ( G `  x ) )  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  <->  x  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) ) )
151150biimpd 207 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( `' G `  ( G `  x ) )  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  ->  x  e.  ( `' G " ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d ) ) ) )
152137, 146, 1513syld 55 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  ->  x  e.  ( `' G " ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d ) ) ) )
153152imp 429 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  x  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
15495, 153syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  x  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
155154ex 434 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  ->  x  e.  ( `' G " ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d ) ) ) )
156155ssrdv 3505 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
157156ralrimiva 2871 . . . . . 6  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  A. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
158103mpt2fun 6403 . . . . . . . . . 10  |-  Fun  G
159158a1i 11 . . . . . . . . 9  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  Fun  G )
16013sselda 3499 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  X  e.  ( RR 
X.  RR ) )
161 f1odm 5826 . . . . . . . . . . 11  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  dom  G  =  ( RR  X.  RR ) )
162107, 110, 161mp2b 10 . . . . . . . . . 10  |-  dom  G  =  ( RR  X.  RR )
163160, 162syl6eleqr 2556 . . . . . . . . 9  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  X  e.  dom  G
)
164 simpr 461 . . . . . . . . 9  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  X  e.  A )
165 funfvima 6148 . . . . . . . . . 10  |-  ( ( Fun  G  /\  X  e.  dom  G )  -> 
( X  e.  A  ->  ( G `  X
)  e.  ( G
" A ) ) )
166165imp 429 . . . . . . . . 9  |-  ( ( ( Fun  G  /\  X  e.  dom  G )  /\  X  e.  A
)  ->  ( G `  X )  e.  ( G " A ) )
167159, 163, 164, 166syl21anc 1227 . . . . . . . 8  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  ( G `  X
)  e.  ( G
" A ) )
168 hmeoima 20391 . . . . . . . . . . 11  |-  ( ( G  e.  ( ( J  tX  J )
Homeo ( TopOpen ` fld ) )  /\  A  e.  ( J  tX  J
) )  ->  ( G " A )  e.  ( TopOpen ` fld ) )
169107, 168mpan 670 . . . . . . . . . 10  |-  ( A  e.  ( J  tX  J )  ->  ( G " A )  e.  ( TopOpen ` fld ) )
170106cnfldtopn 21414 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
171170elmopn2 21073 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  e.  ( *Met `  CC )  ->  ( ( G " A )  e.  ( TopOpen ` fld )  <->  ( ( G
" A )  C_  CC  /\  A. m  e.  ( G " A
) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) ) ) )
172122, 171ax-mp 5 . . . . . . . . . . 11  |-  ( ( G " A )  e.  ( TopOpen ` fld )  <->  ( ( G
" A )  C_  CC  /\  A. m  e.  ( G " A
) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) ) )
173172simprbi 464 . . . . . . . . . 10  |-  ( ( G " A )  e.  ( TopOpen ` fld )  ->  A. m  e.  ( G " A
) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
174169, 173syl 16 . . . . . . . . 9  |-  ( A  e.  ( J  tX  J )  ->  A. m  e.  ( G " A
) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
175174adantr 465 . . . . . . . 8  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  A. m  e.  ( G " A ) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
176 oveq1 6303 . . . . . . . . . . 11  |-  ( m  =  ( G `  X )  ->  (
m ( ball `  ( abs  o.  -  ) ) d )  =  ( ( G `  X
) ( ball `  ( abs  o.  -  ) ) d ) )
177176sseq1d 3526 . . . . . . . . . 10  |-  ( m  =  ( G `  X )  ->  (
( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A )  <->  ( ( G `  X )
( ball `  ( abs  o. 
-  ) ) d )  C_  ( G " A ) ) )
178177rexbidv 2968 . . . . . . . . 9  |-  ( m  =  ( G `  X )  ->  ( E. d  e.  RR+  (
m ( ball `  ( abs  o.  -  ) ) d )  C_  ( G " A )  <->  E. d  e.  RR+  ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d )  C_  ( G " A ) ) )
179178rspcva 3208 . . . . . . . 8  |-  ( ( ( G `  X
)  e.  ( G
" A )  /\  A. m  e.  ( G
" A ) E. d  e.  RR+  (
m ( ball `  ( abs  o.  -  ) ) d )  C_  ( G " A ) )  ->  E. d  e.  RR+  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
180167, 175, 179syl2anc 661 . . . . . . 7  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
181 imass2 5382 . . . . . . . . . 10  |-  ( ( ( G `  X
) ( ball `  ( abs  o.  -  ) ) d )  C_  ( G " A )  -> 
( `' G "
( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  ( `' G " ( G " A ) ) )
182 f1of1 5821 . . . . . . . . . . . . 13  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  G :
( RR  X.  RR ) -1-1-> CC )
183107, 110, 182mp2b 10 . . . . . . . . . . . 12  |-  G :
( RR  X.  RR ) -1-1-> CC
184 f1imacnv 5838 . . . . . . . . . . . 12  |-  ( ( G : ( RR 
X.  RR ) -1-1-> CC  /\  A  C_  ( RR  X.  RR ) )  -> 
( `' G "
( G " A
) )  =  A )
185183, 13, 184sylancr 663 . . . . . . . . . . 11  |-  ( A  e.  ( J  tX  J )  ->  ( `' G " ( G
" A ) )  =  A )
186185sseq2d 3527 . . . . . . . . . 10  |-  ( A  e.  ( J  tX  J )  ->  (
( `' G "
( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  ( `' G " ( G " A ) )  <->  ( `' G " ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d ) )  C_  A
) )
187181, 186syl5ib 219 . . . . . . . . 9  |-  ( A  e.  ( J  tX  J )  ->  (
( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A )  ->  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A ) )
188187reximdv 2931 . . . . . . . 8  |-  ( A  e.  ( J  tX  J )  ->  ( E. d  e.  RR+  (
( G `  X
) ( ball `  ( abs  o.  -  ) ) d )  C_  ( G " A )  ->  E. d  e.  RR+  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A ) )
189188adantr 465 . . . . . . 7  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  ( E. d  e.  RR+  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A )  ->  E. d  e.  RR+  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )
)
190180, 189mpd 15 . . . . . 6  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )
191 r19.29 2992 . . . . . 6  |-  ( ( A. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  E. d  e.  RR+  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )  ->  E. d  e.  RR+  ( ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A ) )
192157, 190, 191syl2anc 661 . . . . 5  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A ) )
193 sstr 3507 . . . . . 6  |-  ( ( ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )  ->  (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  C_  A
)
194193reximi 2925 . . . . 5  |-  ( E. d  e.  RR+  (
( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )  ->  E. d  e.  RR+  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A )
195192, 194syl 16 . . . 4  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A )
196 r19.29 2992 . . . 4  |-  ( ( A. d  e.  RR+  X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  E. d  e.  RR+  (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  C_  A
)  ->  E. d  e.  RR+  ( X  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) )
19770, 195, 196syl2anc 661 . . 3  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( X  e.  (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  /\  (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  C_  A
) )
198 r19.29 2992 . . 3  |-  ( ( A. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  E. d  e.  RR+  ( X  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) )  ->  E. d  e.  RR+  (
( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) ) )
19951, 197, 198syl2anc 661 . 2  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) ) )
200 eleq2 2530 . . . . 5  |-  ( r  =  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( X  e.  r  <-> 
X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) ) )
201 sseq1 3520 . . . . 5  |-  ( r  =  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( r  C_  A  <->  ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  C_  A
) )
202200, 201anbi12d 710 . . . 4  |-  ( r  =  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( X  e.  r  /\  r  C_  A )  <->  ( X  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) ) )
203202rspcev 3210 . . 3  |-  ( ( ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) )  ->  E. r  e.  B  ( X  e.  r  /\  r  C_  A ) )
204203rexlimivw 2946 . 2  |-  ( E. d  e.  RR+  (
( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) )  ->  E. r  e.  B  ( X  e.  r  /\  r  C_  A ) )
205199, 204syl 16 1  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. r  e.  B  ( X  e.  r  /\  r  C_  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   _Vcvv 3109    C_ wss 3471   ~Pcpw 4015   U.cuni 4251   class class class wbr 4456    X. cxp 5006   `'ccnv 5007   dom cdm 5008   ran crn 5009   "cima 5011    o. ccom 5012   Fun wfun 5588    Fn wfn 5589   -->wf 5590   -1-1->wf1 5591   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298   1stc1st 6797   2ndc2nd 6798   CCcc 9507   RRcr 9508   _ici 9511    + caddc 9512    x. cmul 9514   +oocpnf 9642   -oocmnf 9643   RR*cxr 9644    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   2c2 10606   RR+crp 11245   (,)cioo 11554   Recre 12941   Imcim 12942   abscabs 13078   TopOpenctopn 14838   topGenctg 14854   *Metcxmt 18529   ballcbl 18531  ℂfldccnfld 18546   Topctop 19520    tX ctx 20186   Homeochmeo 20379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-icc 11561  df-fz 11698  df-fzo 11821  df-seq 12110  df-exp 12169  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-starv 14726  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-unif 14734  df-hom 14735  df-cco 14736  df-rest 14839  df-topn 14840  df-0g 14858  df-gsum 14859  df-topgen 14860  df-pt 14861  df-prds 14864  df-xrs 14918  df-qtop 14923  df-imas 14924  df-xps 14926  df-mre 15002  df-mrc 15003  df-acs 15005  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-submnd 16093  df-mulg 16186  df-cntz 16481  df-cmn 16926  df-psmet 18537  df-xmet 18538  df-met 18539  df-bl 18540  df-mopn 18541  df-cnfld 18547  df-top 19525  df-bases 19527  df-topon 19528  df-topsp 19529  df-cn 19854  df-cnp 19855  df-tx 20188  df-hmeo 20381  df-xms 20948  df-ms 20949  df-tms 20950  df-cncf 21507
This theorem is referenced by:  dya2iocnei  28414
  Copyright terms: Public domain W3C validator