MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tppreq3 Structured version   Unicode version

Theorem tppreq3 4105
Description: An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
Assertion
Ref Expression
tppreq3  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  B } )

Proof of Theorem tppreq3
StepHypRef Expression
1 tpeq3 4090 . . 3  |-  ( C  =  B  ->  { A ,  B ,  C }  =  { A ,  B ,  B } )
21eqcoms 2434 . 2  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  B ,  B } )
3 tpidm23 4103 . 2  |-  { A ,  B ,  B }  =  { A ,  B }
42, 3syl6eq 2479 1  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  B } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437   {cpr 4000   {ctp 4002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-v 3082  df-un 3441  df-sn 3999  df-pr 4001  df-tp 4003
This theorem is referenced by:  tpprceq3  4140  1to3vfriswmgra  25733
  Copyright terms: Public domain W3C validator