MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpostpos2 Structured version   Unicode version

Theorem tpostpos2 6966
Description: Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
tpostpos2  |-  ( ( Rel  F  /\  Rel  dom 
F )  -> tpos tpos  F  =  F )

Proof of Theorem tpostpos2
StepHypRef Expression
1 tpostpos 6965 . 2  |- tpos tpos  F  =  ( F  i^i  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
2 relrelss 5522 . . . 4  |-  ( ( Rel  F  /\  Rel  dom 
F )  <->  F  C_  (
( _V  X.  _V )  X.  _V ) )
3 ssun1 3660 . . . . . 6  |-  ( _V 
X.  _V )  C_  (
( _V  X.  _V )  u.  { (/) } )
4 xpss1 5102 . . . . . 6  |-  ( ( _V  X.  _V )  C_  ( ( _V  X.  _V )  u.  { (/) } )  ->  ( ( _V  X.  _V )  X. 
_V )  C_  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
53, 4ax-mp 5 . . . . 5  |-  ( ( _V  X.  _V )  X.  _V )  C_  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
6 sstr 3505 . . . . 5  |-  ( ( F  C_  ( ( _V  X.  _V )  X. 
_V )  /\  (
( _V  X.  _V )  X.  _V )  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )  ->  F  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )
75, 6mpan2 671 . . . 4  |-  ( F 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  F  C_  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
82, 7sylbi 195 . . 3  |-  ( ( Rel  F  /\  Rel  dom 
F )  ->  F  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )
9 df-ss 3483 . . 3  |-  ( F 
C_  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V )  <->  ( F  i^i  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )  =  F )
108, 9sylib 196 . 2  |-  ( ( Rel  F  /\  Rel  dom 
F )  ->  ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) )  =  F )
111, 10syl5eq 2513 1  |-  ( ( Rel  F  /\  Rel  dom 
F )  -> tpos tpos  F  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374   _Vcvv 3106    u. cun 3467    i^i cin 3468    C_ wss 3469   (/)c0 3778   {csn 4020    X. cxp 4990   dom cdm 4992   Rel wrel 4997  tpos ctpos 6944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-fv 5587  df-tpos 6945
This theorem is referenced by:  2oppchomf  14969  mattpostpos  18716
  Copyright terms: Public domain W3C validator