MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposss Structured version   Unicode version

Theorem tposss 6744
Description: Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposss  |-  ( F 
C_  G  -> tpos  F  C_ tpos  G )

Proof of Theorem tposss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 coss1 4993 . . 3  |-  ( F 
C_  G  ->  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )  C_  ( G  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) ) )
2 dmss 5037 . . . . . 6  |-  ( F 
C_  G  ->  dom  F 
C_  dom  G )
3 cnvss 5010 . . . . . 6  |-  ( dom 
F  C_  dom  G  ->  `' dom  F  C_  `' dom  G )
4 unss1 3523 . . . . . 6  |-  ( `' dom  F  C_  `' dom  G  ->  ( `' dom  F  u.  { (/) } )  C_  ( `' dom  G  u.  { (/) } ) )
5 resmpt 5154 . . . . . 6  |-  ( ( `' dom  F  u.  { (/)
} )  C_  ( `' dom  G  u.  { (/)
} )  ->  (
( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } )  |`  ( `' dom  F  u.  { (/) } ) )  =  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )
62, 3, 4, 54syl 21 . . . . 5  |-  ( F 
C_  G  ->  (
( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } )  |`  ( `' dom  F  u.  { (/) } ) )  =  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )
7 resss 5132 . . . . 5  |-  ( ( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } )  |`  ( `' dom  F  u.  { (/) } ) ) 
C_  ( x  e.  ( `' dom  G  u.  { (/) } )  |->  U. `' { x } )
86, 7syl6eqssr 3405 . . . 4  |-  ( F 
C_  G  ->  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) 
C_  ( x  e.  ( `' dom  G  u.  { (/) } )  |->  U. `' { x } ) )
9 coss2 4994 . . . 4  |-  ( ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) 
C_  ( x  e.  ( `' dom  G  u.  { (/) } )  |->  U. `' { x } )  ->  ( G  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )  C_  ( G  o.  ( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } ) ) )
108, 9syl 16 . . 3  |-  ( F 
C_  G  ->  ( G  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )  C_  ( G  o.  ( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } ) ) )
111, 10sstrd 3364 . 2  |-  ( F 
C_  G  ->  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )  C_  ( G  o.  ( x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } ) ) )
12 df-tpos 6743 . 2  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
13 df-tpos 6743 . 2  |- tpos  G  =  ( G  o.  (
x  e.  ( `' dom  G  u.  { (/)
} )  |->  U. `' { x } ) )
1411, 12, 133sstr4g 3395 1  |-  ( F 
C_  G  -> tpos  F  C_ tpos  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    u. cun 3324    C_ wss 3326   (/)c0 3635   {csn 3875   U.cuni 4089    e. cmpt 4348   `'ccnv 4837   dom cdm 4838    |` cres 4840    o. ccom 4842  tpos ctpos 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pr 4529
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-br 4291  df-opab 4349  df-mpt 4350  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-res 4850  df-tpos 6743
This theorem is referenced by:  tposeq  6745
  Copyright terms: Public domain W3C validator