MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposfun Structured version   Unicode version

Theorem tposfun 6963
Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposfun  |-  ( Fun 
F  ->  Fun tpos  F )

Proof of Theorem tposfun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funmpt 5617 . . 3  |-  Fun  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
2 funco 5619 . . 3  |-  ( ( Fun  F  /\  Fun  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )  ->  Fun  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) )
31, 2mpan2 671 . 2  |-  ( Fun 
F  ->  Fun  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) )
4 df-tpos 6947 . . 3  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
54funeqi 5601 . 2  |-  ( Fun tpos  F 
<->  Fun  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) ) )
63, 5sylibr 212 1  |-  ( Fun 
F  ->  Fun tpos  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    u. cun 3469   (/)c0 3780   {csn 4022   U.cuni 4240    |-> cmpt 4500   `'ccnv 4993   dom cdm 4994    o. ccom 4998   Fun wfun 5575  tpos ctpos 6946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pr 4681
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-sn 4023  df-pr 4025  df-op 4029  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-fun 5583  df-tpos 6947
This theorem is referenced by:  tposfn2  6969
  Copyright terms: Public domain W3C validator