MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposf1o2 Structured version   Unicode version

Theorem tposf1o2 6880
Description: Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf1o2  |-  ( Rel 
A  ->  ( F : A -1-1-onto-> B  -> tpos  F : `' A
-1-1-onto-> B ) )

Proof of Theorem tposf1o2
StepHypRef Expression
1 tposf12 6879 . . 3  |-  ( Rel 
A  ->  ( F : A -1-1-> B  -> tpos  F : `' A -1-1-> B ) )
2 tposfo2 6877 . . 3  |-  ( Rel 
A  ->  ( F : A -onto-> B  -> tpos  F : `' A -onto-> B ) )
31, 2anim12d 563 . 2  |-  ( Rel 
A  ->  ( ( F : A -1-1-> B  /\  F : A -onto-> B )  ->  (tpos  F : `' A -1-1-> B  /\ tpos  F : `' A -onto-> B ) ) )
4 df-f1o 5532 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
5 df-f1o 5532 . 2  |-  (tpos  F : `' A -1-1-onto-> B  <->  (tpos  F : `' A -1-1-> B  /\ tpos  F : `' A -onto-> B ) )
63, 4, 53imtr4g 270 1  |-  ( Rel 
A  ->  ( F : A -1-1-onto-> B  -> tpos  F : `' A
-1-1-onto-> B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   `'ccnv 4946   Rel wrel 4952   -1-1->wf1 5522   -onto->wfo 5523   -1-1-onto->wf1o 5524  tpos ctpos 6853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-sbc 3293  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-1st 6686  df-2nd 6687  df-tpos 6854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator