MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposf12 Structured version   Unicode version

Theorem tposf12 6970
Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf12  |-  ( Rel 
A  ->  ( F : A -1-1-> B  -> tpos  F : `' A -1-1-> B ) )

Proof of Theorem tposf12
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  F : A -1-1-> B )
2 relcnv 5365 . . . . . . 7  |-  Rel  `' A
3 cnvf1o 6872 . . . . . . 7  |-  ( Rel  `' A  ->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-onto-> `' `' A )
4 f1of1 5806 . . . . . . 7  |-  ( ( x  e.  `' A  |-> 
U. `' { x } ) : `' A
-1-1-onto-> `' `' A  ->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A )
52, 3, 4mp2b 10 . . . . . 6  |-  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A
6 simpl 457 . . . . . . . 8  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  Rel  A )
7 dfrel2 5448 . . . . . . . 8  |-  ( Rel 
A  <->  `' `' A  =  A
)
86, 7sylib 196 . . . . . . 7  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  `' `' A  =  A
)
9 f1eq3 5769 . . . . . . 7  |-  ( `' `' A  =  A  ->  ( ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
108, 9syl 16 . . . . . 6  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
115, 10mpbii 211 . . . . 5  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A )
12 f1dm 5776 . . . . . . . 8  |-  ( F : A -1-1-> B  ->  dom  F  =  A )
131, 12syl 16 . . . . . . 7  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  dom  F  =  A )
1413cnveqd 5169 . . . . . 6  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  `' dom  F  =  `' A )
15 mpteq1 4520 . . . . . 6  |-  ( `' dom  F  =  `' A  ->  ( x  e.  `' dom  F  |->  U. `' { x } )  =  ( x  e.  `' A  |->  U. `' { x } ) )
16 f1eq1 5767 . . . . . 6  |-  ( ( x  e.  `' dom  F 
|->  U. `' { x } )  =  ( x  e.  `' A  |-> 
U. `' { x } )  ->  (
( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
1714, 15, 163syl 20 . . . . 5  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( ( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A  <->  ( x  e.  `' A  |-> 
U. `' { x } ) : `' A -1-1-> A ) )
1811, 17mpbird 232 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A )
19 f1co 5781 . . . 4  |-  ( ( F : A -1-1-> B  /\  ( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A )  -> 
( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) : `' A -1-1-> B )
201, 18, 19syl2anc 661 . . 3  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) : `' A -1-1-> B )
2112releqd 5078 . . . . 5  |-  ( F : A -1-1-> B  -> 
( Rel  dom  F  <->  Rel  A ) )
2221biimparc 487 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  Rel  dom  F )
23 dftpos2 6962 . . . 4  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
24 f1eq1 5767 . . . 4  |-  (tpos  F  =  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) )  -> 
(tpos  F : `' A -1-1-> B  <->  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) ) : `' A -1-1-> B ) )
2522, 23, 243syl 20 . . 3  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
(tpos  F : `' A -1-1-> B  <->  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) ) : `' A -1-1-> B ) )
2620, 25mpbird 232 . 2  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> tpos  F : `' A -1-1-> B
)
2726ex 434 1  |-  ( Rel 
A  ->  ( F : A -1-1-> B  -> tpos  F : `' A -1-1-> B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374   {csn 4020   U.cuni 4238    |-> cmpt 4498   `'ccnv 4991   dom cdm 4992    o. ccom 4996   Rel wrel 4997   -1-1->wf1 5576   -1-1-onto->wf1o 5578  tpos ctpos 6944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-1st 6774  df-2nd 6775  df-tpos 6945
This theorem is referenced by:  tposf1o2  6971
  Copyright terms: Public domain W3C validator