MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposf12 Structured version   Unicode version

Theorem tposf12 6759
Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf12  |-  ( Rel 
A  ->  ( F : A -1-1-> B  -> tpos  F : `' A -1-1-> B ) )

Proof of Theorem tposf12
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 458 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  F : A -1-1-> B )
2 relcnv 5194 . . . . . . 7  |-  Rel  `' A
3 cnvf1o 6660 . . . . . . 7  |-  ( Rel  `' A  ->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-onto-> `' `' A )
4 f1of1 5628 . . . . . . 7  |-  ( ( x  e.  `' A  |-> 
U. `' { x } ) : `' A
-1-1-onto-> `' `' A  ->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A )
52, 3, 4mp2b 10 . . . . . 6  |-  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A
6 simpl 454 . . . . . . . 8  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  Rel  A )
7 dfrel2 5276 . . . . . . . 8  |-  ( Rel 
A  <->  `' `' A  =  A
)
86, 7sylib 196 . . . . . . 7  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  `' `' A  =  A
)
9 f1eq3 5591 . . . . . . 7  |-  ( `' `' A  =  A  ->  ( ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
108, 9syl 16 . . . . . 6  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
115, 10mpbii 211 . . . . 5  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A )
12 f1dm 5598 . . . . . . . 8  |-  ( F : A -1-1-> B  ->  dom  F  =  A )
131, 12syl 16 . . . . . . 7  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  dom  F  =  A )
1413cnveqd 5002 . . . . . 6  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  `' dom  F  =  `' A )
15 mpteq1 4360 . . . . . 6  |-  ( `' dom  F  =  `' A  ->  ( x  e.  `' dom  F  |->  U. `' { x } )  =  ( x  e.  `' A  |->  U. `' { x } ) )
16 f1eq1 5589 . . . . . 6  |-  ( ( x  e.  `' dom  F 
|->  U. `' { x } )  =  ( x  e.  `' A  |-> 
U. `' { x } )  ->  (
( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
1714, 15, 163syl 20 . . . . 5  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( ( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A  <->  ( x  e.  `' A  |-> 
U. `' { x } ) : `' A -1-1-> A ) )
1811, 17mpbird 232 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A )
19 f1co 5603 . . . 4  |-  ( ( F : A -1-1-> B  /\  ( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A )  -> 
( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) : `' A -1-1-> B )
201, 18, 19syl2anc 654 . . 3  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) : `' A -1-1-> B )
2112releqd 4911 . . . . 5  |-  ( F : A -1-1-> B  -> 
( Rel  dom  F  <->  Rel  A ) )
2221biimparc 484 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  Rel  dom  F )
23 dftpos2 6751 . . . 4  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
24 f1eq1 5589 . . . 4  |-  (tpos  F  =  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) )  -> 
(tpos  F : `' A -1-1-> B  <->  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) ) : `' A -1-1-> B ) )
2522, 23, 243syl 20 . . 3  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
(tpos  F : `' A -1-1-> B  <->  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) ) : `' A -1-1-> B ) )
2620, 25mpbird 232 . 2  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> tpos  F : `' A -1-1-> B
)
2726ex 434 1  |-  ( Rel 
A  ->  ( F : A -1-1-> B  -> tpos  F : `' A -1-1-> B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362   {csn 3865   U.cuni 4079    e. cmpt 4338   `'ccnv 4826   dom cdm 4827    o. ccom 4831   Rel wrel 4832   -1-1->wf1 5403   -1-1-onto->wf1o 5405  tpos ctpos 6733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2964  df-sbc 3176  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-1st 6566  df-2nd 6567  df-tpos 6734
This theorem is referenced by:  tposf1o2  6760
  Copyright terms: Public domain W3C validator