MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposco Structured version   Unicode version

Theorem tposco 6922
Description: Transposition of a composition. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
tposco  |- tpos  ( F  o.  G )  =  ( F  o. tpos  G
)

Proof of Theorem tposco
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 coass 5447 . 2  |-  ( ( F  o.  G )  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )  =  ( F  o.  ( G  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) ) )
2 dftpos4 6910 . 2  |- tpos  ( F  o.  G )  =  ( ( F  o.  G )  o.  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )
3 dftpos4 6910 . . 3  |- tpos  G  =  ( G  o.  (
x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) )
43coeq2i 5089 . 2  |-  ( F  o. tpos  G )  =  ( F  o.  ( G  o.  ( x  e.  ( ( _V  X.  _V )  u.  { (/) } )  |->  U. `' { x } ) ) )
51, 2, 43eqtr4i 2431 1  |- tpos  ( F  o.  G )  =  ( F  o. tpos  G
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1399   _Vcvv 3047    u. cun 3400   (/)c0 3724   {csn 3957   U.cuni 4176    |-> cmpt 4438    X. cxp 4924   `'ccnv 4925    o. ccom 4930  tpos ctpos 6890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-ral 2747  df-rex 2748  df-rab 2751  df-v 3049  df-sbc 3266  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-op 3964  df-uni 4177  df-br 4381  df-opab 4439  df-mpt 4440  df-id 4722  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-fv 5517  df-tpos 6891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator