MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm13 Unicode version

Theorem tpidm13 3849
Description: Unordered triple  { A ,  B ,  A } is just an overlong way to write  { A ,  B }. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm13  |-  { A ,  B ,  A }  =  { A ,  B }

Proof of Theorem tpidm13
StepHypRef Expression
1 tprot 3842 . 2  |-  { A ,  A ,  B }  =  { A ,  B ,  A }
2 tpidm12 3848 . 2  |-  { A ,  A ,  B }  =  { A ,  B }
31, 2eqtr3i 2409 1  |-  { A ,  B ,  A }  =  { A ,  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1649   {cpr 3758   {ctp 3759
This theorem is referenced by:  hashtpg  11618  wlkntrllem3  21415
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-v 2901  df-un 3268  df-sn 3763  df-pr 3764  df-tp 3765
  Copyright terms: Public domain W3C validator