Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm12 Structured version   Visualization version   Unicode version

Theorem tpidm12 4064
 Description: Unordered triple is just an overlong way to write . (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm12

Proof of Theorem tpidm12
StepHypRef Expression
1 dfsn2 3972 . . 3
21uneq1i 3575 . 2
3 df-pr 3962 . 2
4 df-tp 3964 . 2
52, 3, 43eqtr4ri 2504 1
 Colors of variables: wff setvar class Syntax hints:   wceq 1452   cun 3388  csn 3959  cpr 3961  ctp 3963 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-v 3033  df-un 3395  df-pr 3962  df-tp 3964 This theorem is referenced by:  tpidm13  4065  tpidm23  4066  tpidm  4067  fntpb  6140  hashtpg  12682
 Copyright terms: Public domain W3C validator