Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpid3gVD Structured version   Unicode version

Theorem tpid3gVD 31891
Description: Virtual deduction proof of tpid3g 4093. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tpid3gVD  |-  ( A  e.  B  ->  A  e.  { C ,  D ,  A } )

Proof of Theorem tpid3gVD
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 idn2 31648 . . . . . . 7  |-  (. A  e.  B ,. x  =  A  ->.  x  =  A ).
2 3mix3 1159 . . . . . . . . . 10  |-  ( x  =  A  ->  (
x  =  C  \/  x  =  D  \/  x  =  A )
)
31, 2e2 31666 . . . . . . . . 9  |-  (. A  e.  B ,. x  =  A  ->.  ( x  =  C  \/  x  =  D  \/  x  =  A ) ).
4 abid 2439 . . . . . . . . 9  |-  ( x  e.  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) }  <->  ( x  =  C  \/  x  =  D  \/  x  =  A ) )
53, 4e2bir 31668 . . . . . . . 8  |-  (. A  e.  B ,. x  =  A  ->.  x  e.  {
x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) } ).
6 dftp2 4025 . . . . . . . . 9  |-  { C ,  D ,  A }  =  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) }
76eleq2i 2530 . . . . . . . 8  |-  ( x  e.  { C ,  D ,  A }  <->  x  e.  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) } )
85, 7e2bir 31668 . . . . . . 7  |-  (. A  e.  B ,. x  =  A  ->.  x  e.  { C ,  D ,  A } ).
9 eleq1 2524 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  { C ,  D ,  A }  <->  A  e.  { C ,  D ,  A }
) )
109biimpd 207 . . . . . . 7  |-  ( x  =  A  ->  (
x  e.  { C ,  D ,  A }  ->  A  e.  { C ,  D ,  A }
) )
111, 8, 10e22 31706 . . . . . 6  |-  (. A  e.  B ,. x  =  A  ->.  A  e.  { C ,  D ,  A } ).
1211in2 31640 . . . . 5  |-  (. A  e.  B  ->.  ( x  =  A  ->  A  e.  { C ,  D ,  A } ) ).
1312gen11 31651 . . . 4  |-  (. A  e.  B  ->.  A. x ( x  =  A  ->  A  e.  { C ,  D ,  A } ) ).
14 19.23v 1921 . . . 4  |-  ( A. x ( x  =  A  ->  A  e.  { C ,  D ,  A } )  <->  ( E. x  x  =  A  ->  A  e.  { C ,  D ,  A }
) )
1513, 14e1bi 31664 . . 3  |-  (. A  e.  B  ->.  ( E. x  x  =  A  ->  A  e.  { C ,  D ,  A }
) ).
16 idn1 31600 . . . 4  |-  (. A  e.  B  ->.  A  e.  B ).
17 elisset 3083 . . . 4  |-  ( A  e.  B  ->  E. x  x  =  A )
1816, 17e1a 31662 . . 3  |-  (. A  e.  B  ->.  E. x  x  =  A ).
19 id 22 . . 3  |-  ( ( E. x  x  =  A  ->  A  e.  { C ,  D ,  A } )  ->  ( E. x  x  =  A  ->  A  e.  { C ,  D ,  A } ) )
2015, 18, 19e11 31723 . 2  |-  (. A  e.  B  ->.  A  e.  { C ,  D ,  A } ).
2120in1 31597 1  |-  ( A  e.  B  ->  A  e.  { C ,  D ,  A } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ w3o 964   A.wal 1368    = wceq 1370   E.wex 1587    e. wcel 1758   {cab 2437   {ctp 3984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-v 3074  df-un 3436  df-sn 3981  df-pr 3983  df-tp 3985  df-vd1 31596  df-vd2 31604
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator