Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpid3gVD Structured version   Unicode version

Theorem tpid3gVD 33988
Description: Virtual deduction proof of tpid3g 4059. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tpid3gVD  |-  ( A  e.  B  ->  A  e.  { C ,  D ,  A } )

Proof of Theorem tpid3gVD
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 idn2 33739 . . . . . . 7  |-  (. A  e.  B ,. x  =  A  ->.  x  =  A ).
2 3mix3 1165 . . . . . . . . . 10  |-  ( x  =  A  ->  (
x  =  C  \/  x  =  D  \/  x  =  A )
)
31, 2e2 33757 . . . . . . . . 9  |-  (. A  e.  B ,. x  =  A  ->.  ( x  =  C  \/  x  =  D  \/  x  =  A ) ).
4 abid 2369 . . . . . . . . 9  |-  ( x  e.  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) }  <->  ( x  =  C  \/  x  =  D  \/  x  =  A ) )
53, 4e2bir 33759 . . . . . . . 8  |-  (. A  e.  B ,. x  =  A  ->.  x  e.  {
x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) } ).
6 dftp2 3990 . . . . . . . . 9  |-  { C ,  D ,  A }  =  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) }
76eleq2i 2460 . . . . . . . 8  |-  ( x  e.  { C ,  D ,  A }  <->  x  e.  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) } )
85, 7e2bir 33759 . . . . . . 7  |-  (. A  e.  B ,. x  =  A  ->.  x  e.  { C ,  D ,  A } ).
9 eleq1 2454 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  { C ,  D ,  A }  <->  A  e.  { C ,  D ,  A }
) )
109biimpd 207 . . . . . . 7  |-  ( x  =  A  ->  (
x  e.  { C ,  D ,  A }  ->  A  e.  { C ,  D ,  A }
) )
111, 8, 10e22 33797 . . . . . 6  |-  (. A  e.  B ,. x  =  A  ->.  A  e.  { C ,  D ,  A } ).
1211in2 33731 . . . . 5  |-  (. A  e.  B  ->.  ( x  =  A  ->  A  e.  { C ,  D ,  A } ) ).
1312gen11 33742 . . . 4  |-  (. A  e.  B  ->.  A. x ( x  =  A  ->  A  e.  { C ,  D ,  A } ) ).
14 19.23v 1768 . . . 4  |-  ( A. x ( x  =  A  ->  A  e.  { C ,  D ,  A } )  <->  ( E. x  x  =  A  ->  A  e.  { C ,  D ,  A }
) )
1513, 14e1bi 33755 . . 3  |-  (. A  e.  B  ->.  ( E. x  x  =  A  ->  A  e.  { C ,  D ,  A }
) ).
16 idn1 33691 . . . 4  |-  (. A  e.  B  ->.  A  e.  B ).
17 elisset 3045 . . . 4  |-  ( A  e.  B  ->  E. x  x  =  A )
1816, 17e1a 33753 . . 3  |-  (. A  e.  B  ->.  E. x  x  =  A ).
19 id 22 . . 3  |-  ( ( E. x  x  =  A  ->  A  e.  { C ,  D ,  A } )  ->  ( E. x  x  =  A  ->  A  e.  { C ,  D ,  A } ) )
2015, 18, 19e11 33814 . 2  |-  (. A  e.  B  ->.  A  e.  { C ,  D ,  A } ).
2120in1 33688 1  |-  ( A  e.  B  ->  A  e.  { C ,  D ,  A } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ w3o 970   A.wal 1397    = wceq 1399   E.wex 1620    e. wcel 1826   {cab 2367   {ctp 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-v 3036  df-un 3394  df-sn 3945  df-pr 3947  df-tp 3949  df-vd1 33687  df-vd2 33695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator