MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid3g Structured version   Unicode version

Theorem tpid3g 4131
Description: Closed theorem form of tpid3 4132. This proof was automatically generated from the virtual deduction proof tpid3gVD 34061 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
tpid3g  |-  ( A  e.  B  ->  A  e.  { C ,  D ,  A } )

Proof of Theorem tpid3g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elisset 3117 . 2  |-  ( A  e.  B  ->  E. x  x  =  A )
2 3mix3 1165 . . . . . . 7  |-  ( x  =  A  ->  (
x  =  C  \/  x  =  D  \/  x  =  A )
)
32a1i 11 . . . . . 6  |-  ( A  e.  B  ->  (
x  =  A  -> 
( x  =  C  \/  x  =  D  \/  x  =  A ) ) )
4 abid 2441 . . . . . 6  |-  ( x  e.  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) }  <->  ( x  =  C  \/  x  =  D  \/  x  =  A ) )
53, 4syl6ibr 227 . . . . 5  |-  ( A  e.  B  ->  (
x  =  A  ->  x  e.  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) } ) )
6 dftp2 4062 . . . . . 6  |-  { C ,  D ,  A }  =  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) }
76eleq2i 2532 . . . . 5  |-  ( x  e.  { C ,  D ,  A }  <->  x  e.  { x  |  ( x  =  C  \/  x  =  D  \/  x  =  A ) } )
85, 7syl6ibr 227 . . . 4  |-  ( A  e.  B  ->  (
x  =  A  ->  x  e.  { C ,  D ,  A }
) )
9 eleq1 2526 . . . 4  |-  ( x  =  A  ->  (
x  e.  { C ,  D ,  A }  <->  A  e.  { C ,  D ,  A }
) )
108, 9mpbidi 216 . . 3  |-  ( A  e.  B  ->  (
x  =  A  ->  A  e.  { C ,  D ,  A }
) )
1110exlimdv 1729 . 2  |-  ( A  e.  B  ->  ( E. x  x  =  A  ->  A  e.  { C ,  D ,  A } ) )
121, 11mpd 15 1  |-  ( A  e.  B  ->  A  e.  { C ,  D ,  A } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ w3o 970    = wceq 1398   E.wex 1617    e. wcel 1823   {cab 2439   {ctp 4020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3108  df-un 3466  df-sn 4017  df-pr 4019  df-tp 4021
This theorem is referenced by:  tpnzd  4138  f1dom3fv3dif  6150  f1dom3el3dif  6151  en3lplem1  8022  en3lp  8024  nb3graprlem1  24656  etransclem48  32307  en3lplem1VD  34062  en3lpVD  34064
  Copyright terms: Public domain W3C validator