Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq2 Structured version   Unicode version

Theorem tpeq2 4061
 Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
tpeq2

Proof of Theorem tpeq2
StepHypRef Expression
1 preq2 4052 . . 3
21uneq1d 3596 . 2
3 df-tp 3977 . 2
4 df-tp 3977 . 2
52, 3, 43eqtr4g 2468 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1405   cun 3412  csn 3972  cpr 3974  ctp 3976 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-v 3061  df-un 3419  df-sn 3973  df-pr 3975  df-tp 3977 This theorem is referenced by:  tpeq2d  4064  fztpval  11796  hashtpg  12572  dvh4dimN  34467  lmod1  38604
 Copyright terms: Public domain W3C validator