![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpeq1d | Structured version Visualization version Unicode version |
Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
Ref | Expression |
---|---|
tpeq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
tpeq1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpeq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | tpeq1 4072 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 17 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-10 1925 ax-11 1930 ax-12 1943 ax-13 2101 ax-ext 2441 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-tru 1457 df-ex 1674 df-nf 1678 df-sb 1808 df-clab 2448 df-cleq 2454 df-clel 2457 df-nfc 2591 df-v 3058 df-un 3420 df-sn 3980 df-pr 3982 df-tp 3984 |
This theorem is referenced by: tpeq123d 4078 |
Copyright terms: Public domain | W3C validator |