MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpcoma Structured version   Visualization version   Unicode version

Theorem tpcoma 4059
Description: Swap 1st and 2nd members of an unordered triple. (Contributed by NM, 22-May-2015.)
Assertion
Ref Expression
tpcoma  |-  { A ,  B ,  C }  =  { B ,  A ,  C }

Proof of Theorem tpcoma
StepHypRef Expression
1 prcom 4041 . . 3  |-  { A ,  B }  =  { B ,  A }
21uneq1i 3575 . 2  |-  ( { A ,  B }  u.  { C } )  =  ( { B ,  A }  u.  { C } )
3 df-tp 3964 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
4 df-tp 3964 . 2  |-  { B ,  A ,  C }  =  ( { B ,  A }  u.  { C } )
52, 3, 43eqtr4i 2503 1  |-  { A ,  B ,  C }  =  { B ,  A ,  C }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1452    u. cun 3388   {csn 3959   {cpr 3961   {ctp 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-v 3033  df-un 3395  df-pr 3962  df-tp 3964
This theorem is referenced by:  tpcomb  4060  tppreqb  4104  nb3grapr2  25261  nb3gra2nb  25262  frgra3v  25809  3vfriswmgra  25812  1to3vfriswmgra  25814  nb3grpr2  39621  nb3gr2nb  39622
  Copyright terms: Public domain W3C validator