Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  totbndss Structured version   Unicode version

Theorem totbndss 28816
Description: A subset of a totally bounded metric space is totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
totbndss  |-  ( ( M  e.  ( TotBnd `  X )  /\  S  C_  X )  ->  ( M  |`  ( S  X.  S ) )  e.  ( TotBnd `  S )
)

Proof of Theorem totbndss
Dummy variables  b 
d  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istotbnd 28808 . . . 4  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e. 
Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
21simprbi 464 . . 3  |-  ( M  e.  ( TotBnd `  X
)  ->  A. d  e.  RR+  E. v  e. 
Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )
3 sseq2 3478 . . . . . . 7  |-  ( U. v  =  X  ->  ( S  C_  U. v  <->  S 
C_  X ) )
43biimprcd 225 . . . . . 6  |-  ( S 
C_  X  ->  ( U. v  =  X  ->  S  C_  U. v
) )
54anim1d 564 . . . . 5  |-  ( S 
C_  X  ->  (
( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) )  ->  ( S  C_ 
U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )
65reximdv 2925 . . . 4  |-  ( S 
C_  X  ->  ( E. v  e.  Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M
) d ) )  ->  E. v  e.  Fin  ( S  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x
( ball `  M )
d ) ) ) )
76ralimdv 2826 . . 3  |-  ( S 
C_  X  ->  ( A. d  e.  RR+  E. v  e.  Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) )  ->  A. d  e.  RR+  E. v  e. 
Fin  ( S  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
82, 7mpan9 469 . 2  |-  ( ( M  e.  ( TotBnd `  X )  /\  S  C_  X )  ->  A. d  e.  RR+  E. v  e. 
Fin  ( S  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )
9 totbndmet 28811 . . 3  |-  ( M  e.  ( TotBnd `  X
)  ->  M  e.  ( Met `  X ) )
10 eqid 2451 . . . 4  |-  ( M  |`  ( S  X.  S
) )  =  ( M  |`  ( S  X.  S ) )
1110sstotbnd 28814 . . 3  |-  ( ( M  e.  ( Met `  X )  /\  S  C_  X )  ->  (
( M  |`  ( S  X.  S ) )  e.  ( TotBnd `  S
)  <->  A. d  e.  RR+  E. v  e.  Fin  ( S  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )
129, 11sylan 471 . 2  |-  ( ( M  e.  ( TotBnd `  X )  /\  S  C_  X )  ->  (
( M  |`  ( S  X.  S ) )  e.  ( TotBnd `  S
)  <->  A. d  e.  RR+  E. v  e.  Fin  ( S  C_  U. v  /\  A. b  e.  v  E. x  e.  X  b  =  ( x (
ball `  M )
d ) ) ) )
138, 12mpbird 232 1  |-  ( ( M  e.  ( TotBnd `  X )  /\  S  C_  X )  ->  ( M  |`  ( S  X.  S ) )  e.  ( TotBnd `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   E.wrex 2796    C_ wss 3428   U.cuni 4191    X. cxp 4938    |` cres 4942   ` cfv 5518  (class class class)co 6192   Fincfn 7412   RR+crp 11094   Metcme 17913   ballcbl 17914   TotBndctotbnd 28805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-1o 7022  df-oadd 7026  df-er 7203  df-map 7318  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-div 10097  df-2 10483  df-rp 11095  df-xneg 11192  df-xadd 11193  df-xmul 11194  df-psmet 17920  df-xmet 17921  df-met 17922  df-bl 17923  df-totbnd 28807
This theorem is referenced by:  prdsbnd2  28834
  Copyright terms: Public domain W3C validator