Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  totbndbnd Structured version   Unicode version

Theorem totbndbnd 31825
Description: A totally bounded metric space is bounded. This theorem fails for extended metrics - a bounded extended metric is a metric, but there are totally bounded extended metrics that are not metrics (if we were to weaken istotbnd 31805 to only require that  M be an extended metric). A counterexample is the discrete extended metric (assigning distinct points distance +oo) on a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
totbndbnd  |-  ( M  e.  ( TotBnd `  X
)  ->  M  e.  ( Bnd `  X ) )

Proof of Theorem totbndbnd
Dummy variables  v 
d  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndmet 31808 . 2  |-  ( M  e.  ( TotBnd `  X
)  ->  M  e.  ( Met `  X ) )
2 1rp 11306 . . 3  |-  1  e.  RR+
3 istotbnd3 31807 . . . 4  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
43simprbi 465 . . 3  |-  ( M  e.  ( TotBnd `  X
)  ->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X )
5 oveq2 6313 . . . . . . 7  |-  ( d  =  1  ->  (
x ( ball `  M
) d )  =  ( x ( ball `  M ) 1 ) )
65iuneq2d 4329 . . . . . 6  |-  ( d  =  1  ->  U_ x  e.  v  ( x
( ball `  M )
d )  =  U_ x  e.  v  (
x ( ball `  M
) 1 ) )
76eqeq1d 2431 . . . . 5  |-  ( d  =  1  ->  ( U_ x  e.  v 
( x ( ball `  M ) d )  =  X  <->  U_ x  e.  v  ( x (
ball `  M )
1 )  =  X ) )
87rexbidv 2946 . . . 4  |-  ( d  =  1  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) d )  =  X  <->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
1 )  =  X ) )
98rspcv 3184 . . 3  |-  ( 1  e.  RR+  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )
102, 4, 9mpsyl 65 . 2  |-  ( M  e.  ( TotBnd `  X
)  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
1 )  =  X )
11 simplll 766 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  M  e.  ( Met `  X ) )
12 elfpw 7882 . . . . . . . . . . . . . 14  |-  ( v  e.  ( ~P X  i^i  Fin )  <->  ( v  C_  X  /\  v  e. 
Fin ) )
1312simplbi 461 . . . . . . . . . . . . 13  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  C_  X )
1413ad2antrl 732 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  v  C_  X )
1514sselda 3470 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  z  e.  X )
16 simpllr 767 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  y  e.  X )
17 metcl 21278 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  z  e.  X  /\  y  e.  X )  ->  (
z M y )  e.  RR )
1811, 15, 16, 17syl3anc 1264 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( z M y )  e.  RR )
19 metge0 21291 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  z  e.  X  /\  y  e.  X )  ->  0  <_  ( z M y ) )
2011, 15, 16, 19syl3anc 1264 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  0  <_  ( z M y ) )
2118, 20ge0p1rpd 11368 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( (
z M y )  +  1 )  e.  RR+ )
22 eqid 2429 . . . . . . . . 9  |-  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =  ( z  e.  v  |->  ( ( z M y )  +  1 ) )
2321, 22fmptd 6061 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) : v --> RR+ )
24 frn 5752 . . . . . . . 8  |-  ( ( z  e.  v  |->  ( ( z M y )  +  1 ) ) : v --> RR+  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  C_  RR+ )
2523, 24syl 17 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  C_  RR+ )
2612simprbi 465 . . . . . . . . . 10  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  e.  Fin )
27 mptfi 7879 . . . . . . . . . 10  |-  ( v  e.  Fin  ->  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  e.  Fin )
28 rnfi 7863 . . . . . . . . . 10  |-  ( ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e.  Fin  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  e.  Fin )
2926, 27, 283syl 18 . . . . . . . . 9  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  e.  Fin )
3029ad2antrl 732 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  e.  Fin )
31 simplr 760 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  y  e.  X )
32 simprr 764 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X )
3331, 32eleqtrrd 2520 . . . . . . . . 9  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  y  e.  U_ x  e.  v  ( x ( ball `  M ) 1 ) )
34 ne0i 3773 . . . . . . . . 9  |-  ( y  e.  U_ x  e.  v  ( x (
ball `  M )
1 )  ->  U_ x  e.  v  ( x
( ball `  M )
1 )  =/=  (/) )
35 dm0rn0 5071 . . . . . . . . . . 11  |-  ( dom  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  <->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/) )
36 ovex 6333 . . . . . . . . . . . . . . 15  |-  ( ( z M y )  +  1 )  e. 
_V
3736, 22dmmpti 5725 . . . . . . . . . . . . . 14  |-  dom  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  =  v
3837eqeq1i 2436 . . . . . . . . . . . . 13  |-  ( dom  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  <->  v  =  (/) )
39 iuneq1 4316 . . . . . . . . . . . . 13  |-  ( v  =  (/)  ->  U_ x  e.  v  ( x
( ball `  M )
1 )  =  U_ x  e.  (/)  ( x ( ball `  M
) 1 ) )
4038, 39sylbi 198 . . . . . . . . . . . 12  |-  ( dom  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  ->  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  U_ x  e.  (/)  ( x ( ball `  M ) 1 ) )
41 0iun 4359 . . . . . . . . . . . 12  |-  U_ x  e.  (/)  ( x (
ball `  M )
1 )  =  (/)
4240, 41syl6eq 2486 . . . . . . . . . . 11  |-  ( dom  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  ->  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  (/) )
4335, 42sylbir 216 . . . . . . . . . 10  |-  ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  ->  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  (/) )
4443necon3i 2671 . . . . . . . . 9  |-  ( U_ x  e.  v  (
x ( ball `  M
) 1 )  =/=  (/)  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/) )
4533, 34, 443syl 18 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =/=  (/) )
46 rpssre 11312 . . . . . . . . 9  |-  RR+  C_  RR
4725, 46syl6ss 3482 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  C_  RR )
48 ltso 9713 . . . . . . . . 9  |-  <  Or  RR
49 fisupcl 7991 . . . . . . . . 9  |-  ( (  <  Or  RR  /\  ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e. 
Fin  /\  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/)  /\  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  C_  RR )
)  ->  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) )
5048, 49mpan 674 . . . . . . . 8  |-  ( ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e. 
Fin  /\  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/)  /\  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  C_  RR )  ->  sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) )
5130, 45, 47, 50syl3anc 1264 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) )
5225, 51sseldd 3471 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR+ )
53 metxmet 21280 . . . . . . . . . . . . . 14  |-  ( M  e.  ( Met `  X
)  ->  M  e.  ( *Met `  X
) )
5453ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  M  e.  ( *Met `  X ) )
5554adantr 466 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  M  e.  ( *Met `  X
) )
56 1red 9657 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  1  e.  RR )
5747, 51sseldd 3471 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR )
5857adantr 466 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR )
5947adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) 
C_  RR )
6045adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/) )
6130adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e.  Fin )
62 fimaxre2 10552 . . . . . . . . . . . . . . 15  |-  ( ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  C_  RR  /\  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e.  Fin )  ->  E. d  e.  RR  A. w  e.  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) w  <_  d
)
6359, 61, 62syl2anc 665 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  E. d  e.  RR  A. w  e. 
ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) w  <_  d )
6422elrnmpt1 5103 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  v  /\  ( ( z M y )  +  1 )  e.  _V )  ->  ( ( z M y )  +  1 )  e.  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) )
6536, 64mpan2 675 . . . . . . . . . . . . . . 15  |-  ( z  e.  v  ->  (
( z M y )  +  1 )  e.  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) )
6665adantl 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( (
z M y )  +  1 )  e. 
ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) )
67 suprub 10570 . . . . . . . . . . . . . 14  |-  ( ( ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) 
C_  RR  /\  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/)  /\  E. d  e.  RR  A. w  e.  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) w  <_  d )  /\  ( ( z M y )  +  1 )  e.  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) )  ->  (
( z M y )  +  1 )  <_  sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
6859, 60, 63, 66, 67syl31anc 1267 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( (
z M y )  +  1 )  <_  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
69 leaddsub 10089 . . . . . . . . . . . . . 14  |-  ( ( ( z M y )  e.  RR  /\  1  e.  RR  /\  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR )  ->  (
( ( z M y )  +  1 )  <_  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  <->  ( z M y )  <_ 
( sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  -  1 ) ) )
7018, 56, 58, 69syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( (
( z M y )  +  1 )  <_  sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  <->  ( z M y )  <_  ( sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  -  1 ) ) )
7168, 70mpbid 213 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( z M y )  <_ 
( sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  -  1 ) )
72 blss2 21350 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( *Met `  X
)  /\  z  e.  X  /\  y  e.  X
)  /\  ( 1  e.  RR  /\  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR  /\  ( z M y )  <_ 
( sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  -  1 ) ) )  -> 
( z ( ball `  M ) 1 ) 
C_  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
7355, 15, 16, 56, 58, 71, 72syl33anc 1279 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( z
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
7473ralrimiva 2846 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  A. z  e.  v  ( z
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
75 nfcv 2591 . . . . . . . . . . . 12  |-  F/_ z
( x ( ball `  M ) 1 )
76 nfcv 2591 . . . . . . . . . . . . 13  |-  F/_ z
y
77 nfcv 2591 . . . . . . . . . . . . 13  |-  F/_ z
( ball `  M )
78 nfmpt1 4515 . . . . . . . . . . . . . . 15  |-  F/_ z
( z  e.  v 
|->  ( ( z M y )  +  1 ) )
7978nfrn 5097 . . . . . . . . . . . . . 14  |-  F/_ z ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )
80 nfcv 2591 . . . . . . . . . . . . . 14  |-  F/_ z RR
81 nfcv 2591 . . . . . . . . . . . . . 14  |-  F/_ z  <
8279, 80, 81nfsup 7971 . . . . . . . . . . . . 13  |-  F/_ z sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )
8376, 77, 82nfov 6331 . . . . . . . . . . . 12  |-  F/_ z
( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
8475, 83nfss 3463 . . . . . . . . . . 11  |-  F/ z ( x ( ball `  M ) 1 ) 
C_  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
85 nfv 1754 . . . . . . . . . . 11  |-  F/ x
( z ( ball `  M ) 1 ) 
C_  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
86 oveq1 6312 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x ( ball `  M
) 1 )  =  ( z ( ball `  M ) 1 ) )
8786sseq1d 3497 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( x ( ball `  M ) 1 ) 
C_  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  <->  ( z (
ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) ) )
8884, 85, 87cbvral 3058 . . . . . . . . . 10  |-  ( A. x  e.  v  (
x ( ball `  M
) 1 )  C_  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  <->  A. z  e.  v  ( z
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
8974, 88sylibr 215 . . . . . . . . 9  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  A. x  e.  v  ( x
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
90 iunss 4343 . . . . . . . . 9  |-  ( U_ x  e.  v  (
x ( ball `  M
) 1 )  C_  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  <->  A. x  e.  v  ( x
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
9189, 90sylibr 215 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  U_ x  e.  v  ( x
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
9232, 91eqsstr3d 3505 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  X  C_  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
9352rpxrd 11342 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR* )
94 blssm 21364 . . . . . . . 8  |-  ( ( M  e.  ( *Met `  X )  /\  y  e.  X  /\  sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR* )  ->  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  C_  X )
9554, 31, 93, 94syl3anc 1264 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  C_  X )
9692, 95eqssd 3487 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  X  =  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
97 oveq2 6313 . . . . . . . 8  |-  ( d  =  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  ->  (
y ( ball `  M
) d )  =  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
9897eqeq2d 2443 . . . . . . 7  |-  ( d  =  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  ->  ( X  =  ( y
( ball `  M )
d )  <->  X  =  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) ) )
9998rspcev 3188 . . . . . 6  |-  ( ( sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR+  /\  X  =  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )  ->  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) )
10052, 96, 99syl2anc 665 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) )
101100rexlimdvaa 2925 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  y  e.  X )  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) 1 )  =  X  ->  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) ) )
102101ralrimdva 2850 . . 3  |-  ( M  e.  ( Met `  X
)  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  (
x ( ball `  M
) 1 )  =  X  ->  A. y  e.  X  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) ) )
103 isbnd 31816 . . . 4  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. y  e.  X  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) ) )
104103baib 911 . . 3  |-  ( M  e.  ( Met `  X
)  ->  ( M  e.  ( Bnd `  X
)  <->  A. y  e.  X  E. d  e.  RR+  X  =  ( y ( ball `  M ) d ) ) )
105102, 104sylibrd 237 . 2  |-  ( M  e.  ( Met `  X
)  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  (
x ( ball `  M
) 1 )  =  X  ->  M  e.  ( Bnd `  X ) ) )
1061, 10, 105sylc 62 1  |-  ( M  e.  ( TotBnd `  X
)  ->  M  e.  ( Bnd `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   E.wrex 2783   _Vcvv 3087    i^i cin 3441    C_ wss 3442   (/)c0 3767   ~Pcpw 3985   U_ciun 4302   class class class wbr 4426    |-> cmpt 4484    Or wor 4774   dom cdm 4854   ran crn 4855   -->wf 5597   ` cfv 5601  (class class class)co 6305   Fincfn 7577   supcsup 7960   RRcr 9537   0cc0 9538   1c1 9539    + caddc 9541   RR*cxr 9673    < clt 9674    <_ cle 9675    - cmin 9859   RR+crp 11302   *Metcxmt 18890   Metcme 18891   ballcbl 18892   TotBndctotbnd 31802   Bndcbnd 31803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-sup 7962  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-2 10668  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-totbnd 31804  df-bnd 31815
This theorem is referenced by:  equivbnd2  31828  prdsbnd2  31831  cntotbnd  31832  cnpwstotbnd  31833
  Copyright terms: Public domain W3C validator