Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  totbndbnd Structured version   Unicode version

Theorem totbndbnd 30447
Description: A totally bounded metric space is bounded. This theorem fails for extended metrics - a bounded extended metric is a metric, but there are totally bounded extended metrics that are not metrics (if we were to weaken istotbnd 30427 to only require that  M be an extended metric). A counterexample is the discrete extended metric (assigning distinct points distance +oo) on a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
totbndbnd  |-  ( M  e.  ( TotBnd `  X
)  ->  M  e.  ( Bnd `  X ) )

Proof of Theorem totbndbnd
Dummy variables  v 
d  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndmet 30430 . 2  |-  ( M  e.  ( TotBnd `  X
)  ->  M  e.  ( Met `  X ) )
2 1rp 11249 . . 3  |-  1  e.  RR+
3 istotbnd3 30429 . . . 4  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
43simprbi 464 . . 3  |-  ( M  e.  ( TotBnd `  X
)  ->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X )
5 oveq2 6304 . . . . . . 7  |-  ( d  =  1  ->  (
x ( ball `  M
) d )  =  ( x ( ball `  M ) 1 ) )
65iuneq2d 4359 . . . . . 6  |-  ( d  =  1  ->  U_ x  e.  v  ( x
( ball `  M )
d )  =  U_ x  e.  v  (
x ( ball `  M
) 1 ) )
76eqeq1d 2459 . . . . 5  |-  ( d  =  1  ->  ( U_ x  e.  v 
( x ( ball `  M ) d )  =  X  <->  U_ x  e.  v  ( x (
ball `  M )
1 )  =  X ) )
87rexbidv 2968 . . . 4  |-  ( d  =  1  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) d )  =  X  <->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
1 )  =  X ) )
98rspcv 3206 . . 3  |-  ( 1  e.  RR+  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )
102, 4, 9mpsyl 63 . 2  |-  ( M  e.  ( TotBnd `  X
)  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
1 )  =  X )
11 simplll 759 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  M  e.  ( Met `  X ) )
12 elfpw 7840 . . . . . . . . . . . . . 14  |-  ( v  e.  ( ~P X  i^i  Fin )  <->  ( v  C_  X  /\  v  e. 
Fin ) )
1312simplbi 460 . . . . . . . . . . . . 13  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  C_  X )
1413ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  v  C_  X )
1514sselda 3499 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  z  e.  X )
16 simpllr 760 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  y  e.  X )
17 metcl 20960 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  z  e.  X  /\  y  e.  X )  ->  (
z M y )  e.  RR )
1811, 15, 16, 17syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( z M y )  e.  RR )
19 metge0 20973 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  z  e.  X  /\  y  e.  X )  ->  0  <_  ( z M y ) )
2011, 15, 16, 19syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  0  <_  ( z M y ) )
2118, 20ge0p1rpd 11307 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( (
z M y )  +  1 )  e.  RR+ )
22 eqid 2457 . . . . . . . . 9  |-  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =  ( z  e.  v  |->  ( ( z M y )  +  1 ) )
2321, 22fmptd 6056 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) : v --> RR+ )
24 frn 5743 . . . . . . . 8  |-  ( ( z  e.  v  |->  ( ( z M y )  +  1 ) ) : v --> RR+  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  C_  RR+ )
2523, 24syl 16 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  C_  RR+ )
2612simprbi 464 . . . . . . . . . 10  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  e.  Fin )
27 mptfi 7837 . . . . . . . . . 10  |-  ( v  e.  Fin  ->  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  e.  Fin )
28 rnfi 7823 . . . . . . . . . 10  |-  ( ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e.  Fin  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  e.  Fin )
2926, 27, 283syl 20 . . . . . . . . 9  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  e.  Fin )
3029ad2antrl 727 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  e.  Fin )
31 simplr 755 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  y  e.  X )
32 simprr 757 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X )
3331, 32eleqtrrd 2548 . . . . . . . . 9  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  y  e.  U_ x  e.  v  ( x ( ball `  M ) 1 ) )
34 ne0i 3799 . . . . . . . . 9  |-  ( y  e.  U_ x  e.  v  ( x (
ball `  M )
1 )  ->  U_ x  e.  v  ( x
( ball `  M )
1 )  =/=  (/) )
35 dm0rn0 5229 . . . . . . . . . . 11  |-  ( dom  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  <->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/) )
36 ovex 6324 . . . . . . . . . . . . . . 15  |-  ( ( z M y )  +  1 )  e. 
_V
3736, 22dmmpti 5716 . . . . . . . . . . . . . 14  |-  dom  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  =  v
3837eqeq1i 2464 . . . . . . . . . . . . 13  |-  ( dom  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  <->  v  =  (/) )
39 iuneq1 4346 . . . . . . . . . . . . 13  |-  ( v  =  (/)  ->  U_ x  e.  v  ( x
( ball `  M )
1 )  =  U_ x  e.  (/)  ( x ( ball `  M
) 1 ) )
4038, 39sylbi 195 . . . . . . . . . . . 12  |-  ( dom  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  ->  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  U_ x  e.  (/)  ( x ( ball `  M ) 1 ) )
41 0iun 4389 . . . . . . . . . . . 12  |-  U_ x  e.  (/)  ( x (
ball `  M )
1 )  =  (/)
4240, 41syl6eq 2514 . . . . . . . . . . 11  |-  ( dom  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  ->  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  (/) )
4335, 42sylbir 213 . . . . . . . . . 10  |-  ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  ->  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  (/) )
4443necon3i 2697 . . . . . . . . 9  |-  ( U_ x  e.  v  (
x ( ball `  M
) 1 )  =/=  (/)  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/) )
4533, 34, 443syl 20 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =/=  (/) )
46 rpssre 11255 . . . . . . . . 9  |-  RR+  C_  RR
4725, 46syl6ss 3511 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  C_  RR )
48 ltso 9682 . . . . . . . . 9  |-  <  Or  RR
49 fisupcl 7945 . . . . . . . . 9  |-  ( (  <  Or  RR  /\  ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e. 
Fin  /\  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/)  /\  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  C_  RR )
)  ->  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) )
5048, 49mpan 670 . . . . . . . 8  |-  ( ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e. 
Fin  /\  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/)  /\  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  C_  RR )  ->  sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) )
5130, 45, 47, 50syl3anc 1228 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) )
5225, 51sseldd 3500 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR+ )
53 metxmet 20962 . . . . . . . . . . . . . 14  |-  ( M  e.  ( Met `  X
)  ->  M  e.  ( *Met `  X
) )
5453ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  M  e.  ( *Met `  X ) )
5554adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  M  e.  ( *Met `  X
) )
56 1red 9628 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  1  e.  RR )
5747, 51sseldd 3500 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR )
5857adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR )
5947adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) 
C_  RR )
6045adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/) )
6130adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e.  Fin )
62 fimaxre2 10511 . . . . . . . . . . . . . . 15  |-  ( ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  C_  RR  /\  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e.  Fin )  ->  E. d  e.  RR  A. w  e.  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) w  <_  d
)
6359, 61, 62syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  E. d  e.  RR  A. w  e. 
ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) w  <_  d )
6422elrnmpt1 5261 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  v  /\  ( ( z M y )  +  1 )  e.  _V )  ->  ( ( z M y )  +  1 )  e.  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) )
6536, 64mpan2 671 . . . . . . . . . . . . . . 15  |-  ( z  e.  v  ->  (
( z M y )  +  1 )  e.  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) )
6665adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( (
z M y )  +  1 )  e. 
ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) )
67 suprub 10524 . . . . . . . . . . . . . 14  |-  ( ( ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) 
C_  RR  /\  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/)  /\  E. d  e.  RR  A. w  e.  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) w  <_  d )  /\  ( ( z M y )  +  1 )  e.  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) )  ->  (
( z M y )  +  1 )  <_  sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
6859, 60, 63, 66, 67syl31anc 1231 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( (
z M y )  +  1 )  <_  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
69 leaddsub 10049 . . . . . . . . . . . . . 14  |-  ( ( ( z M y )  e.  RR  /\  1  e.  RR  /\  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR )  ->  (
( ( z M y )  +  1 )  <_  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  <->  ( z M y )  <_ 
( sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  -  1 ) ) )
7018, 56, 58, 69syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( (
( z M y )  +  1 )  <_  sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  <->  ( z M y )  <_  ( sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  -  1 ) ) )
7168, 70mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( z M y )  <_ 
( sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  -  1 ) )
72 blss2 21032 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( *Met `  X
)  /\  z  e.  X  /\  y  e.  X
)  /\  ( 1  e.  RR  /\  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR  /\  ( z M y )  <_ 
( sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  -  1 ) ) )  -> 
( z ( ball `  M ) 1 ) 
C_  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
7355, 15, 16, 56, 58, 71, 72syl33anc 1243 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( z
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
7473ralrimiva 2871 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  A. z  e.  v  ( z
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
75 nfcv 2619 . . . . . . . . . . . 12  |-  F/_ z
( x ( ball `  M ) 1 )
76 nfcv 2619 . . . . . . . . . . . . 13  |-  F/_ z
y
77 nfcv 2619 . . . . . . . . . . . . 13  |-  F/_ z
( ball `  M )
78 nfmpt1 4546 . . . . . . . . . . . . . . 15  |-  F/_ z
( z  e.  v 
|->  ( ( z M y )  +  1 ) )
7978nfrn 5255 . . . . . . . . . . . . . 14  |-  F/_ z ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )
80 nfcv 2619 . . . . . . . . . . . . . 14  |-  F/_ z RR
81 nfcv 2619 . . . . . . . . . . . . . 14  |-  F/_ z  <
8279, 80, 81nfsup 7928 . . . . . . . . . . . . 13  |-  F/_ z sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )
8376, 77, 82nfov 6322 . . . . . . . . . . . 12  |-  F/_ z
( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
8475, 83nfss 3492 . . . . . . . . . . 11  |-  F/ z ( x ( ball `  M ) 1 ) 
C_  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
85 nfv 1708 . . . . . . . . . . 11  |-  F/ x
( z ( ball `  M ) 1 ) 
C_  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
86 oveq1 6303 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x ( ball `  M
) 1 )  =  ( z ( ball `  M ) 1 ) )
8786sseq1d 3526 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( x ( ball `  M ) 1 ) 
C_  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  <->  ( z (
ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) ) )
8884, 85, 87cbvral 3080 . . . . . . . . . 10  |-  ( A. x  e.  v  (
x ( ball `  M
) 1 )  C_  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  <->  A. z  e.  v  ( z
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
8974, 88sylibr 212 . . . . . . . . 9  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  A. x  e.  v  ( x
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
90 iunss 4373 . . . . . . . . 9  |-  ( U_ x  e.  v  (
x ( ball `  M
) 1 )  C_  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  <->  A. x  e.  v  ( x
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
9189, 90sylibr 212 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  U_ x  e.  v  ( x
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
9232, 91eqsstr3d 3534 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  X  C_  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
9352rpxrd 11282 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR* )
94 blssm 21046 . . . . . . . 8  |-  ( ( M  e.  ( *Met `  X )  /\  y  e.  X  /\  sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR* )  ->  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  C_  X )
9554, 31, 93, 94syl3anc 1228 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  C_  X )
9692, 95eqssd 3516 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  X  =  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
97 oveq2 6304 . . . . . . . 8  |-  ( d  =  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  ->  (
y ( ball `  M
) d )  =  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
9897eqeq2d 2471 . . . . . . 7  |-  ( d  =  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  ->  ( X  =  ( y
( ball `  M )
d )  <->  X  =  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) ) )
9998rspcev 3210 . . . . . 6  |-  ( ( sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR+  /\  X  =  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )  ->  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) )
10052, 96, 99syl2anc 661 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) )
101100rexlimdvaa 2950 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  y  e.  X )  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) 1 )  =  X  ->  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) ) )
102101ralrimdva 2875 . . 3  |-  ( M  e.  ( Met `  X
)  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  (
x ( ball `  M
) 1 )  =  X  ->  A. y  e.  X  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) ) )
103 isbnd 30438 . . . 4  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. y  e.  X  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) ) )
104103baib 903 . . 3  |-  ( M  e.  ( Met `  X
)  ->  ( M  e.  ( Bnd `  X
)  <->  A. y  e.  X  E. d  e.  RR+  X  =  ( y ( ball `  M ) d ) ) )
105102, 104sylibrd 234 . 2  |-  ( M  e.  ( Met `  X
)  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  (
x ( ball `  M
) 1 )  =  X  ->  M  e.  ( Bnd `  X ) ) )
1061, 10, 105sylc 60 1  |-  ( M  e.  ( TotBnd `  X
)  ->  M  e.  ( Bnd `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   _Vcvv 3109    i^i cin 3470    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   U_ciun 4332   class class class wbr 4456    |-> cmpt 4515    Or wor 4808   dom cdm 5008   ran crn 5009   -->wf 5590   ` cfv 5594  (class class class)co 6296   Fincfn 7535   supcsup 7918   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512   RR*cxr 9644    < clt 9645    <_ cle 9646    - cmin 9824   RR+crp 11245   *Metcxmt 18529   Metcme 18530   ballcbl 18531   TotBndctotbnd 30424   Bndcbnd 30425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-2 10615  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-psmet 18537  df-xmet 18538  df-met 18539  df-bl 18540  df-totbnd 30426  df-bnd 30437
This theorem is referenced by:  equivbnd2  30450  prdsbnd2  30453  cntotbnd  30454  cnpwstotbnd  30455
  Copyright terms: Public domain W3C validator