Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  totbndbnd Structured version   Unicode version

Theorem totbndbnd 29916
Description: A totally bounded metric space is bounded. This theorem fails for extended metrics - a bounded extended metric is a metric, but there are totally bounded extended metrics that are not metrics (if we were to weaken istotbnd 29896 to only require that  M be an extended metric). A counterexample is the discrete extended metric (assigning distinct points distance +oo) on a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
totbndbnd  |-  ( M  e.  ( TotBnd `  X
)  ->  M  e.  ( Bnd `  X ) )

Proof of Theorem totbndbnd
Dummy variables  v 
d  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndmet 29899 . 2  |-  ( M  e.  ( TotBnd `  X
)  ->  M  e.  ( Met `  X ) )
2 1rp 11224 . . 3  |-  1  e.  RR+
3 istotbnd3 29898 . . . 4  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X ) )
43simprbi 464 . . 3  |-  ( M  e.  ( TotBnd `  X
)  ->  A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X )
5 oveq2 6292 . . . . . . 7  |-  ( d  =  1  ->  (
x ( ball `  M
) d )  =  ( x ( ball `  M ) 1 ) )
65iuneq2d 4352 . . . . . 6  |-  ( d  =  1  ->  U_ x  e.  v  ( x
( ball `  M )
d )  =  U_ x  e.  v  (
x ( ball `  M
) 1 ) )
76eqeq1d 2469 . . . . 5  |-  ( d  =  1  ->  ( U_ x  e.  v 
( x ( ball `  M ) d )  =  X  <->  U_ x  e.  v  ( x (
ball `  M )
1 )  =  X ) )
87rexbidv 2973 . . . 4  |-  ( d  =  1  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) d )  =  X  <->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
1 )  =  X ) )
98rspcv 3210 . . 3  |-  ( 1  e.  RR+  ->  ( A. d  e.  RR+  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
d )  =  X  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )
102, 4, 9mpsyl 63 . 2  |-  ( M  e.  ( TotBnd `  X
)  ->  E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  ( x (
ball `  M )
1 )  =  X )
11 simplll 757 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  M  e.  ( Met `  X ) )
12 elfpw 7822 . . . . . . . . . . . . . 14  |-  ( v  e.  ( ~P X  i^i  Fin )  <->  ( v  C_  X  /\  v  e. 
Fin ) )
1312simplbi 460 . . . . . . . . . . . . 13  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  C_  X )
1413ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  v  C_  X )
1514sselda 3504 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  z  e.  X )
16 simpllr 758 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  y  e.  X )
17 metcl 20598 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  z  e.  X  /\  y  e.  X )  ->  (
z M y )  e.  RR )
1811, 15, 16, 17syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( z M y )  e.  RR )
19 metge0 20611 . . . . . . . . . . 11  |-  ( ( M  e.  ( Met `  X )  /\  z  e.  X  /\  y  e.  X )  ->  0  <_  ( z M y ) )
2011, 15, 16, 19syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  0  <_  ( z M y ) )
2118, 20ge0p1rpd 11282 . . . . . . . . 9  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( (
z M y )  +  1 )  e.  RR+ )
22 eqid 2467 . . . . . . . . 9  |-  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =  ( z  e.  v  |->  ( ( z M y )  +  1 ) )
2321, 22fmptd 6045 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) : v --> RR+ )
24 frn 5737 . . . . . . . 8  |-  ( ( z  e.  v  |->  ( ( z M y )  +  1 ) ) : v --> RR+  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  C_  RR+ )
2523, 24syl 16 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  C_  RR+ )
2612simprbi 464 . . . . . . . . . 10  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  v  e.  Fin )
27 mptfi 7819 . . . . . . . . . 10  |-  ( v  e.  Fin  ->  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  e.  Fin )
28 rnfi 7805 . . . . . . . . . 10  |-  ( ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e.  Fin  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  e.  Fin )
2926, 27, 283syl 20 . . . . . . . . 9  |-  ( v  e.  ( ~P X  i^i  Fin )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  e.  Fin )
3029ad2antrl 727 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  e.  Fin )
31 simplr 754 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  y  e.  X )
32 simprr 756 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X )
3331, 32eleqtrrd 2558 . . . . . . . . 9  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  y  e.  U_ x  e.  v  ( x ( ball `  M ) 1 ) )
34 ne0i 3791 . . . . . . . . 9  |-  ( y  e.  U_ x  e.  v  ( x (
ball `  M )
1 )  ->  U_ x  e.  v  ( x
( ball `  M )
1 )  =/=  (/) )
35 dm0rn0 5219 . . . . . . . . . . 11  |-  ( dom  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  <->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/) )
36 ovex 6309 . . . . . . . . . . . . . . 15  |-  ( ( z M y )  +  1 )  e. 
_V
3736, 22dmmpti 5710 . . . . . . . . . . . . . 14  |-  dom  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  =  v
3837eqeq1i 2474 . . . . . . . . . . . . 13  |-  ( dom  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  <->  v  =  (/) )
39 iuneq1 4339 . . . . . . . . . . . . 13  |-  ( v  =  (/)  ->  U_ x  e.  v  ( x
( ball `  M )
1 )  =  U_ x  e.  (/)  ( x ( ball `  M
) 1 ) )
4038, 39sylbi 195 . . . . . . . . . . . 12  |-  ( dom  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  ->  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  U_ x  e.  (/)  ( x ( ball `  M ) 1 ) )
41 0iun 4382 . . . . . . . . . . . 12  |-  U_ x  e.  (/)  ( x (
ball `  M )
1 )  =  (/)
4240, 41syl6eq 2524 . . . . . . . . . . 11  |-  ( dom  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  ->  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  (/) )
4335, 42sylbir 213 . . . . . . . . . 10  |-  ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =  (/)  ->  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  (/) )
4443necon3i 2707 . . . . . . . . 9  |-  ( U_ x  e.  v  (
x ( ball `  M
) 1 )  =/=  (/)  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/) )
4533, 34, 443syl 20 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  =/=  (/) )
46 rpssre 11230 . . . . . . . . 9  |-  RR+  C_  RR
4725, 46syl6ss 3516 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )  C_  RR )
48 ltso 9665 . . . . . . . . 9  |-  <  Or  RR
49 fisupcl 7927 . . . . . . . . 9  |-  ( (  <  Or  RR  /\  ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e. 
Fin  /\  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/)  /\  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  C_  RR )
)  ->  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) )
5048, 49mpan 670 . . . . . . . 8  |-  ( ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e. 
Fin  /\  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/)  /\  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  C_  RR )  ->  sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) )
5130, 45, 47, 50syl3anc 1228 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) )
5225, 51sseldd 3505 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR+ )
53 metxmet 20600 . . . . . . . . . . . . . 14  |-  ( M  e.  ( Met `  X
)  ->  M  e.  ( *Met `  X
) )
5453ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  M  e.  ( *Met `  X ) )
5554adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  M  e.  ( *Met `  X
) )
56 1re 9595 . . . . . . . . . . . . 13  |-  1  e.  RR
5756a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  1  e.  RR )
5847, 51sseldd 3505 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR )
5958adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR )
6047adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) 
C_  RR )
6145adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/) )
6230adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e.  Fin )
63 fimaxre2 10491 . . . . . . . . . . . . . . 15  |-  ( ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  C_  RR  /\  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) )  e.  Fin )  ->  E. d  e.  RR  A. w  e.  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) w  <_  d
)
6460, 62, 63syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  E. d  e.  RR  A. w  e. 
ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) w  <_  d )
6522elrnmpt1 5251 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  v  /\  ( ( z M y )  +  1 )  e.  _V )  ->  ( ( z M y )  +  1 )  e.  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) )
6636, 65mpan2 671 . . . . . . . . . . . . . . 15  |-  ( z  e.  v  ->  (
( z M y )  +  1 )  e.  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) )
6766adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( (
z M y )  +  1 )  e. 
ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) )
68 suprub 10504 . . . . . . . . . . . . . 14  |-  ( ( ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) 
C_  RR  /\  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) )  =/=  (/)  /\  E. d  e.  RR  A. w  e.  ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) w  <_  d )  /\  ( ( z M y )  +  1 )  e.  ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) )  ->  (
( z M y )  +  1 )  <_  sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
6960, 61, 64, 67, 68syl31anc 1231 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( (
z M y )  +  1 )  <_  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
70 leaddsub 10028 . . . . . . . . . . . . . 14  |-  ( ( ( z M y )  e.  RR  /\  1  e.  RR  /\  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR )  ->  (
( ( z M y )  +  1 )  <_  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  <->  ( z M y )  <_ 
( sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  -  1 ) ) )
7118, 57, 59, 70syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( (
( z M y )  +  1 )  <_  sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  <->  ( z M y )  <_  ( sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  -  1 ) ) )
7269, 71mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( z M y )  <_ 
( sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  -  1 ) )
73 blss2 20670 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ( *Met `  X
)  /\  z  e.  X  /\  y  e.  X
)  /\  ( 1  e.  RR  /\  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR  /\  ( z M y )  <_ 
( sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  -  1 ) ) )  -> 
( z ( ball `  M ) 1 ) 
C_  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
7455, 15, 16, 57, 59, 72, 73syl33anc 1243 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( Met `  X
)  /\  y  e.  X )  /\  (
v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x ( ball `  M ) 1 )  =  X ) )  /\  z  e.  v )  ->  ( z
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
7574ralrimiva 2878 . . . . . . . . . 10  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  A. z  e.  v  ( z
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
76 nfcv 2629 . . . . . . . . . . . 12  |-  F/_ z
( x ( ball `  M ) 1 )
77 nfcv 2629 . . . . . . . . . . . . 13  |-  F/_ z
y
78 nfcv 2629 . . . . . . . . . . . . 13  |-  F/_ z
( ball `  M )
79 nfmpt1 4536 . . . . . . . . . . . . . . 15  |-  F/_ z
( z  e.  v 
|->  ( ( z M y )  +  1 ) )
8079nfrn 5245 . . . . . . . . . . . . . 14  |-  F/_ z ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) )
81 nfcv 2629 . . . . . . . . . . . . . 14  |-  F/_ z RR
82 nfcv 2629 . . . . . . . . . . . . . 14  |-  F/_ z  <
8380, 81, 82nfsup 7911 . . . . . . . . . . . . 13  |-  F/_ z sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )
8477, 78, 83nfov 6307 . . . . . . . . . . . 12  |-  F/_ z
( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
8576, 84nfss 3497 . . . . . . . . . . 11  |-  F/ z ( x ( ball `  M ) 1 ) 
C_  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
86 nfv 1683 . . . . . . . . . . 11  |-  F/ x
( z ( ball `  M ) 1 ) 
C_  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )
87 oveq1 6291 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x ( ball `  M
) 1 )  =  ( z ( ball `  M ) 1 ) )
8887sseq1d 3531 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( x ( ball `  M ) 1 ) 
C_  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  <->  ( z (
ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) ) )
8985, 86, 88cbvral 3084 . . . . . . . . . 10  |-  ( A. x  e.  v  (
x ( ball `  M
) 1 )  C_  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  <->  A. z  e.  v  ( z
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
9075, 89sylibr 212 . . . . . . . . 9  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  A. x  e.  v  ( x
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
91 iunss 4366 . . . . . . . . 9  |-  ( U_ x  e.  v  (
x ( ball `  M
) 1 )  C_  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  <->  A. x  e.  v  ( x
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
9290, 91sylibr 212 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  U_ x  e.  v  ( x
( ball `  M )
1 )  C_  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
9332, 92eqsstr3d 3539 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  X  C_  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
9452rpxrd 11257 . . . . . . . 8  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR* )
95 blssm 20684 . . . . . . . 8  |-  ( ( M  e.  ( *Met `  X )  /\  y  e.  X  /\  sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR* )  ->  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  C_  X )
9654, 31, 94, 95syl3anc 1228 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  (
y ( ball `  M
) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) )  C_  X )
9793, 96eqssd 3521 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  X  =  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
98 oveq2 6292 . . . . . . . 8  |-  ( d  =  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  ->  (
y ( ball `  M
) d )  =  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )
9998eqeq2d 2481 . . . . . . 7  |-  ( d  =  sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  ->  ( X  =  ( y
( ball `  M )
d )  <->  X  =  ( y ( ball `  M ) sup ( ran  ( z  e.  v 
|->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) ) )
10099rspcev 3214 . . . . . 6  |-  ( ( sup ( ran  (
z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  )  e.  RR+  /\  X  =  ( y (
ball `  M ) sup ( ran  ( z  e.  v  |->  ( ( z M y )  +  1 ) ) ,  RR ,  <  ) ) )  ->  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) )
10152, 97, 100syl2anc 661 . . . . 5  |-  ( ( ( M  e.  ( Met `  X )  /\  y  e.  X
)  /\  ( v  e.  ( ~P X  i^i  Fin )  /\  U_ x  e.  v  ( x
( ball `  M )
1 )  =  X ) )  ->  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) )
102101rexlimdvaa 2956 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  y  e.  X )  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v 
( x ( ball `  M ) 1 )  =  X  ->  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) ) )
103102ralrimdva 2882 . . 3  |-  ( M  e.  ( Met `  X
)  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  (
x ( ball `  M
) 1 )  =  X  ->  A. y  e.  X  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) ) )
104 isbnd 29907 . . . 4  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. y  e.  X  E. d  e.  RR+  X  =  ( y ( ball `  M
) d ) ) )
105104baib 901 . . 3  |-  ( M  e.  ( Met `  X
)  ->  ( M  e.  ( Bnd `  X
)  <->  A. y  e.  X  E. d  e.  RR+  X  =  ( y ( ball `  M ) d ) ) )
106103, 105sylibrd 234 . 2  |-  ( M  e.  ( Met `  X
)  ->  ( E. v  e.  ( ~P X  i^i  Fin ) U_ x  e.  v  (
x ( ball `  M
) 1 )  =  X  ->  M  e.  ( Bnd `  X ) ) )
1071, 10, 106sylc 60 1  |-  ( M  e.  ( TotBnd `  X
)  ->  M  e.  ( Bnd `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   U_ciun 4325   class class class wbr 4447    |-> cmpt 4505    Or wor 4799   dom cdm 4999   ran crn 5000   -->wf 5584   ` cfv 5588  (class class class)co 6284   Fincfn 7516   supcsup 7900   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495   RR*cxr 9627    < clt 9628    <_ cle 9629    - cmin 9805   RR+crp 11220   *Metcxmt 18202   Metcme 18203   ballcbl 18204   TotBndctotbnd 29893   Bndcbnd 29894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-2 10594  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-totbnd 29895  df-bnd 29906
This theorem is referenced by:  equivbnd2  29919  prdsbnd2  29922  cntotbnd  29923  cnpwstotbnd  29924
  Copyright terms: Public domain W3C validator