MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tosso Structured version   Unicode version

Theorem tosso 16220
Description: Write the totally ordered set structure predicate in terms of the proper class strict order predicate. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
tosso.b  |-  B  =  ( Base `  K
)
tosso.l  |-  .<_  =  ( le `  K )
tosso.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
tosso  |-  ( K  e.  V  ->  ( K  e. Toset  <->  (  .<  Or  B  /\  (  _I  |`  B ) 
C_  .<_  ) ) )

Proof of Theorem tosso
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tosso.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
2 tosso.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
3 tosso.s . . . . . . . . 9  |-  .<  =  ( lt `  K )
41, 2, 3pleval2 16149 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .<_  y  <->  ( x  .<  y  \/  x  =  y ) ) )
543expb 1206 . . . . . . 7  |-  ( ( K  e.  Poset  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .<_  y  <->  ( x  .<  y  \/  x  =  y ) ) )
61, 2, 3pleval2 16149 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  y  e.  B  /\  x  e.  B )  ->  (
y  .<_  x  <->  ( y  .<  x  \/  y  =  x ) ) )
7 equcom 1848 . . . . . . . . . . 11  |-  ( y  =  x  <->  x  =  y )
87orbi2i 521 . . . . . . . . . 10  |-  ( ( y  .<  x  \/  y  =  x )  <->  ( y  .<  x  \/  x  =  y )
)
96, 8syl6bb 264 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  y  e.  B  /\  x  e.  B )  ->  (
y  .<_  x  <->  ( y  .<  x  \/  x  =  y ) ) )
1093com23 1211 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  x  e.  B  /\  y  e.  B )  ->  (
y  .<_  x  <->  ( y  .<  x  \/  x  =  y ) ) )
11103expb 1206 . . . . . . 7  |-  ( ( K  e.  Poset  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( y  .<_  x  <->  ( y  .<  x  \/  x  =  y ) ) )
125, 11orbi12d 714 . . . . . 6  |-  ( ( K  e.  Poset  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
x  .<_  y  \/  y  .<_  x )  <->  ( (
x  .<  y  \/  x  =  y )  \/  ( y  .<  x  \/  x  =  y
) ) ) )
13 df-3or 983 . . . . . . 7  |-  ( ( x  .<  y  \/  x  =  y  \/  y  .<  x )  <->  ( (
x  .<  y  \/  x  =  y )  \/  y  .<  x )
)
14 or32 529 . . . . . . . 8  |-  ( ( ( x  .<  y  \/  x  =  y
)  \/  y  .<  x )  <->  ( (
x  .<  y  \/  y  .<  x )  \/  x  =  y ) )
15 orordir 533 . . . . . . . 8  |-  ( ( ( x  .<  y  \/  y  .<  x )  \/  x  =  y )  <->  ( ( x 
.<  y  \/  x  =  y )  \/  ( y  .<  x  \/  x  =  y
) ) )
1614, 15bitri 252 . . . . . . 7  |-  ( ( ( x  .<  y  \/  x  =  y
)  \/  y  .<  x )  <->  ( (
x  .<  y  \/  x  =  y )  \/  ( y  .<  x  \/  x  =  y
) ) )
1713, 16bitri 252 . . . . . 6  |-  ( ( x  .<  y  \/  x  =  y  \/  y  .<  x )  <->  ( (
x  .<  y  \/  x  =  y )  \/  ( y  .<  x  \/  x  =  y
) ) )
1812, 17syl6bbr 266 . . . . 5  |-  ( ( K  e.  Poset  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
x  .<_  y  \/  y  .<_  x )  <->  ( x  .<  y  \/  x  =  y  \/  y  .<  x ) ) )
19182ralbidva 2802 . . . 4  |-  ( K  e.  Poset  ->  ( A. x  e.  B  A. y  e.  B  (
x  .<_  y  \/  y  .<_  x )  <->  A. x  e.  B  A. y  e.  B  ( x  .<  y  \/  x  =  y  \/  y  .<  x ) ) )
2019pm5.32i 641 . . 3  |-  ( ( K  e.  Poset  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  \/  y  .<_  x ) )  <->  ( K  e.  Poset  /\  A. x  e.  B  A. y  e.  B  ( x  .<  y  \/  x  =  y  \/  y  .<  x ) ) )
211, 2, 3pospo 16157 . . . 4  |-  ( K  e.  V  ->  ( K  e.  Poset  <->  (  .<  Po  B  /\  (  _I  |`  B )  C_  .<_  ) ) )
2221anbi1d 709 . . 3  |-  ( K  e.  V  ->  (
( K  e.  Poset  /\ 
A. x  e.  B  A. y  e.  B  ( x  .<  y  \/  x  =  y  \/  y  .<  x )
)  <->  ( (  .<  Po  B  /\  (  _I  |`  B )  C_  .<_  )  /\  A. x  e.  B  A. y  e.  B  ( x  .<  y  \/  x  =  y  \/  y  .<  x ) ) ) )
2320, 22syl5bb 260 . 2  |-  ( K  e.  V  ->  (
( K  e.  Poset  /\ 
A. x  e.  B  A. y  e.  B  ( x  .<_  y  \/  y  .<_  x )
)  <->  ( (  .<  Po  B  /\  (  _I  |`  B )  C_  .<_  )  /\  A. x  e.  B  A. y  e.  B  ( x  .<  y  \/  x  =  y  \/  y  .<  x ) ) ) )
241, 2istos 16219 . 2  |-  ( K  e. Toset 
<->  ( K  e.  Poset  /\ 
A. x  e.  B  A. y  e.  B  ( x  .<_  y  \/  y  .<_  x )
) )
25 df-so 4713 . . . 4  |-  (  .<  Or  B  <->  (  .<  Po  B  /\  A. x  e.  B  A. y  e.  B  ( x  .<  y  \/  x  =  y  \/  y  .<  x )
) )
2625anbi1i 699 . . 3  |-  ( ( 
.<  Or  B  /\  (  _I  |`  B )  C_  .<_  )  <->  ( (  .<  Po  B  /\  A. x  e.  B  A. y  e.  B  ( x  .<  y  \/  x  =  y  \/  y  .<  x ) )  /\  (  _I  |`  B ) 
C_  .<_  ) )
27 an32 805 . . 3  |-  ( ( (  .<  Po  B  /\  A. x  e.  B  A. y  e.  B  ( x  .<  y  \/  x  =  y  \/  y  .<  x )
)  /\  (  _I  |`  B )  C_  .<_  )  <-> 
( (  .<  Po  B  /\  (  _I  |`  B ) 
C_  .<_  )  /\  A. x  e.  B  A. y  e.  B  (
x  .<  y  \/  x  =  y  \/  y  .<  x ) ) )
2826, 27bitri 252 . 2  |-  ( ( 
.<  Or  B  /\  (  _I  |`  B )  C_  .<_  )  <->  ( (  .<  Po  B  /\  (  _I  |`  B )  C_  .<_  )  /\  A. x  e.  B  A. y  e.  B  ( x  .<  y  \/  x  =  y  \/  y  .<  x ) ) )
2923, 24, 283bitr4g 291 1  |-  ( K  e.  V  ->  ( K  e. Toset  <->  (  .<  Or  B  /\  (  _I  |`  B ) 
C_  .<_  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    \/ w3o 981    /\ w3a 982    = wceq 1437    e. wcel 1872   A.wral 2709    C_ wss 3374   class class class wbr 4361    _I cid 4701    Po wpo 4710    Or wor 4711    |` cres 4793   ` cfv 5539   Basecbs 15059   lecple 15135   Posetcpo 16123   ltcplt 16124  Tosetctos 16217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-ral 2714  df-rex 2715  df-rab 2718  df-v 3019  df-sbc 3238  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-nul 3700  df-if 3850  df-sn 3937  df-pr 3939  df-op 3943  df-uni 4158  df-br 4362  df-opab 4421  df-mpt 4422  df-id 4706  df-po 4712  df-so 4713  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-res 4803  df-iota 5503  df-fun 5541  df-fv 5547  df-preset 16111  df-poset 16129  df-plt 16142  df-toset 16218
This theorem is referenced by:  opsrtoslem2  18646  opsrso  18648  retos  19123  toslub  28375  tosglb  28377  tosglbOLD  28378  orngsqr  28514
  Copyright terms: Public domain W3C validator