MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topontopi Structured version   Unicode version

Theorem topontopi 19726
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
topontopi.1  |-  J  e.  (TopOn `  B )
Assertion
Ref Expression
topontopi  |-  J  e. 
Top

Proof of Theorem topontopi
StepHypRef Expression
1 topontopi.1 . 2  |-  J  e.  (TopOn `  B )
2 topontop 19721 . 2  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )
31, 2ax-mp 5 1  |-  J  e. 
Top
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1844   ` cfv 5571   Topctop 19688  TopOnctopon 19689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3063  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-iota 5535  df-fun 5573  df-fv 5579  df-topon 19696
This theorem is referenced by:  sn0top  19794  indistop  19797  letop  20002  dfac14  20413  cnfldtop  21585  sszcld  21616  iitop  21678  limccnp2  22590  cxpcn3  23420  lmlim  28395  pnfneige0  28399  sxbrsigalem4  28748  islptre  37006  fourierdlem62  37332
  Copyright terms: Public domain W3C validator