Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topjoin Structured version   Unicode version

Theorem topjoin 30388
Description: Two equivalent formulations of the join of a collection of topologies. (Contributed by Jeff Hankins, 6-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
topjoin  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( topGen `
 ( fi `  ( { X }  u.  U. S ) ) )  =  |^| { k  e.  (TopOn `  X
)  |  A. j  e.  S  j  C_  k } )
Distinct variable groups:    j, k, S    j, V, k    j, X, k

Proof of Theorem topjoin
StepHypRef Expression
1 topontop 19554 . . . . . . 7  |-  ( k  e.  (TopOn `  X
)  ->  k  e.  Top )
21ad2antrl 727 . . . . . 6  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  ( k  e.  (TopOn `  X )  /\  A. j  e.  S  j  C_  k ) )  -> 
k  e.  Top )
3 toponmax 19556 . . . . . . . . 9  |-  ( k  e.  (TopOn `  X
)  ->  X  e.  k )
43ad2antrl 727 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  ( k  e.  (TopOn `  X )  /\  A. j  e.  S  j  C_  k ) )  ->  X  e.  k )
54snssd 4177 . . . . . . 7  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  ( k  e.  (TopOn `  X )  /\  A. j  e.  S  j  C_  k ) )  ->  { X }  C_  k
)
6 simprr 757 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  ( k  e.  (TopOn `  X )  /\  A. j  e.  S  j  C_  k ) )  ->  A. j  e.  S  j  C_  k )
7 unissb 4283 . . . . . . . 8  |-  ( U. S  C_  k  <->  A. j  e.  S  j  C_  k )
86, 7sylibr 212 . . . . . . 7  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  ( k  e.  (TopOn `  X )  /\  A. j  e.  S  j  C_  k ) )  ->  U. S  C_  k )
95, 8unssd 3676 . . . . . 6  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  ( k  e.  (TopOn `  X )  /\  A. j  e.  S  j  C_  k ) )  -> 
( { X }  u.  U. S )  C_  k )
10 tgfiss 19620 . . . . . 6  |-  ( ( k  e.  Top  /\  ( { X }  u.  U. S )  C_  k
)  ->  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) ) 
C_  k )
112, 9, 10syl2anc 661 . . . . 5  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  ( k  e.  (TopOn `  X )  /\  A. j  e.  S  j  C_  k ) )  -> 
( topGen `  ( fi `  ( { X }  u.  U. S ) ) )  C_  k )
1211expr 615 . . . 4  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  k  e.  (TopOn `  X
) )  ->  ( A. j  e.  S  j  C_  k  ->  ( topGen `
 ( fi `  ( { X }  u.  U. S ) ) ) 
C_  k ) )
1312ralrimiva 2871 . . 3  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  A. k  e.  (TopOn `  X )
( A. j  e.  S  j  C_  k  ->  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) )  C_  k )
)
14 ssintrab 4312 . . 3  |-  ( (
topGen `  ( fi `  ( { X }  u.  U. S ) ) ) 
C_  |^| { k  e.  (TopOn `  X )  |  A. j  e.  S  j  C_  k }  <->  A. k  e.  (TopOn `  X )
( A. j  e.  S  j  C_  k  ->  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) )  C_  k )
)
1513, 14sylibr 212 . 2  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( topGen `
 ( fi `  ( { X }  u.  U. S ) ) ) 
C_  |^| { k  e.  (TopOn `  X )  |  A. j  e.  S  j  C_  k } )
16 fibas 19606 . . . . . 6  |-  ( fi
`  ( { X }  u.  U. S ) )  e.  TopBases
17 tgtopon 19600 . . . . . 6  |-  ( ( fi `  ( { X }  u.  U. S ) )  e.  TopBases 
->  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) )  e.  (TopOn `  U. ( fi `  ( { X }  u.  U. S ) ) ) )
1816, 17ax-mp 5 . . . . 5  |-  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) )  e.  (TopOn `  U. ( fi `  ( { X }  u.  U. S ) ) )
19 uniun 4270 . . . . . . . 8  |-  U. ( { X }  u.  U. S )  =  ( U. { X }  u.  U. U. S )
20 unisng 4267 . . . . . . . . . 10  |-  ( X  e.  V  ->  U. { X }  =  X
)
2120adantr 465 . . . . . . . . 9  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  U. { X }  =  X
)
2221uneq1d 3653 . . . . . . . 8  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( U. { X }  u.  U.
U. S )  =  ( X  u.  U. U. S ) )
2319, 22syl5req 2511 . . . . . . 7  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( X  u.  U. U. S
)  =  U. ( { X }  u.  U. S ) )
24 simpr 461 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  S  C_  (TopOn `  X )
)
25 toponuni 19555 . . . . . . . . . . . . . . 15  |-  ( k  e.  (TopOn `  X
)  ->  X  =  U. k )
26 eqimss2 3552 . . . . . . . . . . . . . . 15  |-  ( X  =  U. k  ->  U. k  C_  X )
2725, 26syl 16 . . . . . . . . . . . . . 14  |-  ( k  e.  (TopOn `  X
)  ->  U. k  C_  X )
28 sspwuni 4421 . . . . . . . . . . . . . 14  |-  ( k 
C_  ~P X  <->  U. k  C_  X )
2927, 28sylibr 212 . . . . . . . . . . . . 13  |-  ( k  e.  (TopOn `  X
)  ->  k  C_  ~P X )
30 selpw 4022 . . . . . . . . . . . . 13  |-  ( k  e.  ~P ~P X  <->  k 
C_  ~P X )
3129, 30sylibr 212 . . . . . . . . . . . 12  |-  ( k  e.  (TopOn `  X
)  ->  k  e.  ~P ~P X )
3231ssriv 3503 . . . . . . . . . . 11  |-  (TopOn `  X )  C_  ~P ~P X
3324, 32syl6ss 3511 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  S  C_ 
~P ~P X )
34 sspwuni 4421 . . . . . . . . . 10  |-  ( S 
C_  ~P ~P X  <->  U. S  C_  ~P X )
3533, 34sylib 196 . . . . . . . . 9  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  U. S  C_ 
~P X )
36 sspwuni 4421 . . . . . . . . 9  |-  ( U. S  C_  ~P X  <->  U. U. S  C_  X )
3735, 36sylib 196 . . . . . . . 8  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  U. U. S  C_  X )
38 ssequn2 3673 . . . . . . . 8  |-  ( U. U. S  C_  X  <->  ( X  u.  U. U. S )  =  X )
3937, 38sylib 196 . . . . . . 7  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( X  u.  U. U. S
)  =  X )
40 snex 4697 . . . . . . . . 9  |-  { X }  e.  _V
41 fvex 5882 . . . . . . . . . . . 12  |-  (TopOn `  X )  e.  _V
4241ssex 4600 . . . . . . . . . . 11  |-  ( S 
C_  (TopOn `  X )  ->  S  e.  _V )
4342adantl 466 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  S  e.  _V )
44 uniexg 6596 . . . . . . . . . 10  |-  ( S  e.  _V  ->  U. S  e.  _V )
4543, 44syl 16 . . . . . . . . 9  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  U. S  e.  _V )
46 unexg 6600 . . . . . . . . 9  |-  ( ( { X }  e.  _V  /\  U. S  e. 
_V )  ->  ( { X }  u.  U. S )  e.  _V )
4740, 45, 46sylancr 663 . . . . . . . 8  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( { X }  u.  U. S )  e.  _V )
48 fiuni 7906 . . . . . . . 8  |-  ( ( { X }  u.  U. S )  e.  _V  ->  U. ( { X }  u.  U. S )  =  U. ( fi
`  ( { X }  u.  U. S ) ) )
4947, 48syl 16 . . . . . . 7  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  U. ( { X }  u.  U. S )  =  U. ( fi `  ( { X }  u.  U. S ) ) )
5023, 39, 493eqtr3d 2506 . . . . . 6  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  X  =  U. ( fi `  ( { X }  u.  U. S ) ) )
5150fveq2d 5876 . . . . 5  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  (TopOn `  X )  =  (TopOn `  U. ( fi `  ( { X }  u.  U. S ) ) ) )
5218, 51syl5eleqr 2552 . . . 4  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( topGen `
 ( fi `  ( { X }  u.  U. S ) ) )  e.  (TopOn `  X
) )
53 elssuni 4281 . . . . . . . 8  |-  ( j  e.  S  ->  j  C_ 
U. S )
54 ssun2 3664 . . . . . . . 8  |-  U. S  C_  ( { X }  u.  U. S )
5553, 54syl6ss 3511 . . . . . . 7  |-  ( j  e.  S  ->  j  C_  ( { X }  u.  U. S ) )
56 ssfii 7897 . . . . . . . 8  |-  ( ( { X }  u.  U. S )  e.  _V  ->  ( { X }  u.  U. S )  C_  ( fi `  ( { X }  u.  U. S ) ) )
5747, 56syl 16 . . . . . . 7  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( { X }  u.  U. S )  C_  ( fi `  ( { X }  u.  U. S ) ) )
5855, 57sylan9ssr 3513 . . . . . 6  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  j  e.  S )  ->  j  C_  ( fi `  ( { X }  u.  U. S ) ) )
59 bastg 19594 . . . . . . 7  |-  ( ( fi `  ( { X }  u.  U. S ) )  e.  TopBases 
->  ( fi `  ( { X }  u.  U. S ) )  C_  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) ) )
6016, 59ax-mp 5 . . . . . 6  |-  ( fi
`  ( { X }  u.  U. S ) )  C_  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) )
6158, 60syl6ss 3511 . . . . 5  |-  ( ( ( X  e.  V  /\  S  C_  (TopOn `  X ) )  /\  j  e.  S )  ->  j  C_  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) ) )
6261ralrimiva 2871 . . . 4  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  A. j  e.  S  j  C_  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) ) )
63 sseq2 3521 . . . . . 6  |-  ( k  =  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) )  ->  (
j  C_  k  <->  j  C_  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) ) ) )
6463ralbidv 2896 . . . . 5  |-  ( k  =  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) )  ->  ( A. j  e.  S  j  C_  k  <->  A. j  e.  S  j  C_  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) ) ) )
6564elrab 3257 . . . 4  |-  ( (
topGen `  ( fi `  ( { X }  u.  U. S ) ) )  e.  { k  e.  (TopOn `  X )  |  A. j  e.  S  j  C_  k }  <->  ( ( topGen `
 ( fi `  ( { X }  u.  U. S ) ) )  e.  (TopOn `  X
)  /\  A. j  e.  S  j  C_  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) ) ) )
6652, 62, 65sylanbrc 664 . . 3  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( topGen `
 ( fi `  ( { X }  u.  U. S ) ) )  e.  { k  e.  (TopOn `  X )  |  A. j  e.  S  j  C_  k } )
67 intss1 4303 . . 3  |-  ( (
topGen `  ( fi `  ( { X }  u.  U. S ) ) )  e.  { k  e.  (TopOn `  X )  |  A. j  e.  S  j  C_  k }  ->  |^|
{ k  e.  (TopOn `  X )  |  A. j  e.  S  j  C_  k }  C_  ( topGen `
 ( fi `  ( { X }  u.  U. S ) ) ) )
6866, 67syl 16 . 2  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  |^| { k  e.  (TopOn `  X
)  |  A. j  e.  S  j  C_  k }  C_  ( topGen `  ( fi `  ( { X }  u.  U. S ) ) ) )
6915, 68eqssd 3516 1  |-  ( ( X  e.  V  /\  S  C_  (TopOn `  X
) )  ->  ( topGen `
 ( fi `  ( { X }  u.  U. S ) ) )  =  |^| { k  e.  (TopOn `  X
)  |  A. j  e.  S  j  C_  k } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   {crab 2811   _Vcvv 3109    u. cun 3469    C_ wss 3471   ~Pcpw 4015   {csn 4032   U.cuni 4251   |^|cint 4288   ` cfv 5594   ficfi 7888   topGenctg 14855   Topctop 19521  TopOnctopon 19522   TopBasesctb 19525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-fin 7539  df-fi 7889  df-topgen 14861  df-top 19526  df-bases 19528  df-topon 19529
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator