MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngtset Structured version   Unicode version

Theorem tngtset 21031
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
tngbas.t  |-  T  =  ( G toNrmGrp  N )
tngtset.2  |-  D  =  ( dist `  T
)
tngtset.3  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
tngtset  |-  ( ( G  e.  V  /\  N  e.  W )  ->  J  =  (TopSet `  T ) )

Proof of Theorem tngtset
StepHypRef Expression
1 ovex 6320 . . 3  |-  ( G sSet  <. ( dist `  ndx ) ,  ( N  o.  ( -g `  G
) ) >. )  e.  _V
2 fvex 5882 . . 3  |-  ( MetOpen `  ( N  o.  ( -g `  G ) ) )  e.  _V
3 tsetid 14660 . . . 4  |- TopSet  = Slot  (TopSet ` 
ndx )
43setsid 14548 . . 3  |-  ( ( ( G sSet  <. ( dist `  ndx ) ,  ( N  o.  ( -g `  G ) )
>. )  e.  _V  /\  ( MetOpen `  ( N  o.  ( -g `  G
) ) )  e. 
_V )  ->  ( MetOpen
`  ( N  o.  ( -g `  G ) ) )  =  (TopSet `  ( ( G sSet  <. (
dist `  ndx ) ,  ( N  o.  ( -g `  G ) )
>. ) sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  ( N  o.  ( -g `  G ) ) ) >. ) ) )
51, 2, 4mp2an 672 . 2  |-  ( MetOpen `  ( N  o.  ( -g `  G ) ) )  =  (TopSet `  ( ( G sSet  <. (
dist `  ndx ) ,  ( N  o.  ( -g `  G ) )
>. ) sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  ( N  o.  ( -g `  G ) ) ) >. ) )
6 tngtset.3 . . 3  |-  J  =  ( MetOpen `  D )
7 tngbas.t . . . . . . 7  |-  T  =  ( G toNrmGrp  N )
8 eqid 2467 . . . . . . 7  |-  ( -g `  G )  =  (
-g `  G )
97, 8tngds 21030 . . . . . 6  |-  ( N  e.  W  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T
) )
10 tngtset.2 . . . . . 6  |-  D  =  ( dist `  T
)
119, 10syl6reqr 2527 . . . . 5  |-  ( N  e.  W  ->  D  =  ( N  o.  ( -g `  G ) ) )
1211adantl 466 . . . 4  |-  ( ( G  e.  V  /\  N  e.  W )  ->  D  =  ( N  o.  ( -g `  G
) ) )
1312fveq2d 5876 . . 3  |-  ( ( G  e.  V  /\  N  e.  W )  ->  ( MetOpen `  D )  =  ( MetOpen `  ( N  o.  ( -g `  G ) ) ) )
146, 13syl5eq 2520 . 2  |-  ( ( G  e.  V  /\  N  e.  W )  ->  J  =  ( MetOpen `  ( N  o.  ( -g `  G ) ) ) )
15 eqid 2467 . . . 4  |-  ( N  o.  ( -g `  G
) )  =  ( N  o.  ( -g `  G ) )
16 eqid 2467 . . . 4  |-  ( MetOpen `  ( N  o.  ( -g `  G ) ) )  =  ( MetOpen `  ( N  o.  ( -g `  G ) ) )
177, 8, 15, 16tngval 21021 . . 3  |-  ( ( G  e.  V  /\  N  e.  W )  ->  T  =  ( ( G sSet  <. ( dist `  ndx ) ,  ( N  o.  ( -g `  G
) ) >. ) sSet  <.
(TopSet `  ndx ) ,  ( MetOpen `  ( N  o.  ( -g `  G
) ) ) >.
) )
1817fveq2d 5876 . 2  |-  ( ( G  e.  V  /\  N  e.  W )  ->  (TopSet `  T )  =  (TopSet `  ( ( G sSet  <. ( dist `  ndx ) ,  ( N  o.  ( -g `  G
) ) >. ) sSet  <.
(TopSet `  ndx ) ,  ( MetOpen `  ( N  o.  ( -g `  G
) ) ) >.
) ) )
195, 14, 183eqtr4a 2534 1  |-  ( ( G  e.  V  /\  N  e.  W )  ->  J  =  (TopSet `  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118   <.cop 4039    o. ccom 5009   ` cfv 5594  (class class class)co 6295   ndxcnx 14504   sSet csts 14505  TopSetcts 14578   distcds 14581   -gcsg 15927   MetOpencmopn 18278   toNrmGrp ctng 20967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-ndx 14510  df-slot 14511  df-sets 14513  df-tset 14591  df-ds 14594  df-tng 20973
This theorem is referenced by:  tngtopn  21032
  Copyright terms: Public domain W3C validator