MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngtopn Structured version   Visualization version   Unicode version

Theorem tngtopn 21658
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngbas.t  |-  T  =  ( G toNrmGrp  N )
tngtset.2  |-  D  =  ( dist `  T
)
tngtset.3  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
tngtopn  |-  ( ( G  e.  V  /\  N  e.  W )  ->  J  =  ( TopOpen `  T ) )

Proof of Theorem tngtopn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngbas.t . . 3  |-  T  =  ( G toNrmGrp  N )
2 tngtset.2 . . 3  |-  D  =  ( dist `  T
)
3 tngtset.3 . . 3  |-  J  =  ( MetOpen `  D )
41, 2, 3tngtset 21657 . 2  |-  ( ( G  e.  V  /\  N  e.  W )  ->  J  =  (TopSet `  T ) )
5 df-mopn 18966 . . . . . . . . 9  |-  MetOpen  =  ( x  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  x )
) )
65dmmptss 5331 . . . . . . . 8  |-  dom  MetOpen  C_  U. ran  *Met
76sseli 3428 . . . . . . 7  |-  ( D  e.  dom  MetOpen  ->  D  e.  U. ran  *Met )
8 eqid 2451 . . . . . . . . . . . . . . . . . 18  |-  ( -g `  G )  =  (
-g `  G )
91, 8tngds 21656 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  W  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T
) )
109, 2syl6eqr 2503 . . . . . . . . . . . . . . . 16  |-  ( N  e.  W  ->  ( N  o.  ( -g `  G ) )  =  D )
1110adantl 468 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  V  /\  N  e.  W )  ->  ( N  o.  ( -g `  G ) )  =  D )
1211dmeqd 5037 . . . . . . . . . . . . . 14  |-  ( ( G  e.  V  /\  N  e.  W )  ->  dom  ( N  o.  ( -g `  G ) )  =  dom  D
)
13 dmcoss 5094 . . . . . . . . . . . . . . 15  |-  dom  ( N  o.  ( -g `  G ) )  C_  dom  ( -g `  G
)
14 eqid 2451 . . . . . . . . . . . . . . . . 17  |-  ( Base `  G )  =  (
Base `  G )
15 eqid 2451 . . . . . . . . . . . . . . . . 17  |-  ( +g  `  G )  =  ( +g  `  G )
16 eqid 2451 . . . . . . . . . . . . . . . . 17  |-  ( invg `  G )  =  ( invg `  G )
1714, 15, 16, 8grpsubfval 16708 . . . . . . . . . . . . . . . 16  |-  ( -g `  G )  =  ( x  e.  ( Base `  G ) ,  y  e.  ( Base `  G
)  |->  ( x ( +g  `  G ) ( ( invg `  G ) `  y
) ) )
18 ovex 6318 . . . . . . . . . . . . . . . 16  |-  ( x ( +g  `  G
) ( ( invg `  G ) `
 y ) )  e.  _V
1917, 18dmmpt2 6863 . . . . . . . . . . . . . . 15  |-  dom  ( -g `  G )  =  ( ( Base `  G
)  X.  ( Base `  G ) )
2013, 19sseqtri 3464 . . . . . . . . . . . . . 14  |-  dom  ( N  o.  ( -g `  G ) )  C_  ( ( Base `  G
)  X.  ( Base `  G ) )
2112, 20syl6eqssr 3483 . . . . . . . . . . . . 13  |-  ( ( G  e.  V  /\  N  e.  W )  ->  dom  D  C_  (
( Base `  G )  X.  ( Base `  G
) ) )
2221adantr 467 . . . . . . . . . . . 12  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  dom  D  C_  ( ( Base `  G )  X.  ( Base `  G
) ) )
23 dmss 5034 . . . . . . . . . . . 12  |-  ( dom 
D  C_  ( ( Base `  G )  X.  ( Base `  G
) )  ->  dom  dom 
D  C_  dom  ( (
Base `  G )  X.  ( Base `  G
) ) )
2422, 23syl 17 . . . . . . . . . . 11  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  dom  dom  D  C_  dom  ( ( Base `  G
)  X.  ( Base `  G ) ) )
25 dmxpid 5054 . . . . . . . . . . 11  |-  dom  (
( Base `  G )  X.  ( Base `  G
) )  =  (
Base `  G )
2624, 25syl6sseq 3478 . . . . . . . . . 10  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  dom  dom  D  C_  ( Base `  G ) )
27 simpr 463 . . . . . . . . . . . 12  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  D  e.  U. ran  *Met )
28 xmetunirn 21352 . . . . . . . . . . . 12  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
2927, 28sylib 200 . . . . . . . . . . 11  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  D  e.  ( *Met `  dom  dom  D
) )
30 eqid 2451 . . . . . . . . . . . 12  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
3130mopnuni 21456 . . . . . . . . . . 11  |-  ( D  e.  ( *Met ` 
dom  dom  D )  ->  dom  dom  D  =  U. ( MetOpen `  D )
)
3229, 31syl 17 . . . . . . . . . 10  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  dom  dom  D  =  U. ( MetOpen `  D )
)
331, 14tngbas 21649 . . . . . . . . . . 11  |-  ( N  e.  W  ->  ( Base `  G )  =  ( Base `  T
) )
3433ad2antlr 733 . . . . . . . . . 10  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  -> 
( Base `  G )  =  ( Base `  T
) )
3526, 32, 343sstr3d 3474 . . . . . . . . 9  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  U. ( MetOpen `  D )  C_  ( Base `  T
) )
36 sspwuni 4367 . . . . . . . . 9  |-  ( (
MetOpen `  D )  C_  ~P ( Base `  T
)  <->  U. ( MetOpen `  D
)  C_  ( Base `  T ) )
3735, 36sylibr 216 . . . . . . . 8  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  -> 
( MetOpen `  D )  C_ 
~P ( Base `  T
) )
3837ex 436 . . . . . . 7  |-  ( ( G  e.  V  /\  N  e.  W )  ->  ( D  e.  U. ran  *Met  ->  ( MetOpen
`  D )  C_  ~P ( Base `  T
) ) )
397, 38syl5 33 . . . . . 6  |-  ( ( G  e.  V  /\  N  e.  W )  ->  ( D  e.  dom  MetOpen  ->  ( MetOpen `  D )  C_ 
~P ( Base `  T
) ) )
40 ndmfv 5889 . . . . . . 7  |-  ( -.  D  e.  dom  MetOpen  ->  ( MetOpen
`  D )  =  (/) )
41 0ss 3763 . . . . . . 7  |-  (/)  C_  ~P ( Base `  T )
4240, 41syl6eqss 3482 . . . . . 6  |-  ( -.  D  e.  dom  MetOpen  ->  ( MetOpen
`  D )  C_  ~P ( Base `  T
) )
4339, 42pm2.61d1 163 . . . . 5  |-  ( ( G  e.  V  /\  N  e.  W )  ->  ( MetOpen `  D )  C_ 
~P ( Base `  T
) )
443, 43syl5eqss 3476 . . . 4  |-  ( ( G  e.  V  /\  N  e.  W )  ->  J  C_  ~P ( Base `  T ) )
454, 44eqsstr3d 3467 . . 3  |-  ( ( G  e.  V  /\  N  e.  W )  ->  (TopSet `  T )  C_ 
~P ( Base `  T
) )
46 eqid 2451 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
47 eqid 2451 . . . 4  |-  (TopSet `  T )  =  (TopSet `  T )
4846, 47topnid 15334 . . 3  |-  ( (TopSet `  T )  C_  ~P ( Base `  T )  ->  (TopSet `  T )  =  ( TopOpen `  T
) )
4945, 48syl 17 . 2  |-  ( ( G  e.  V  /\  N  e.  W )  ->  (TopSet `  T )  =  ( TopOpen `  T
) )
504, 49eqtrd 2485 1  |-  ( ( G  e.  V  /\  N  e.  W )  ->  J  =  ( TopOpen `  T ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    = wceq 1444    e. wcel 1887    C_ wss 3404   (/)c0 3731   ~Pcpw 3951   U.cuni 4198    X. cxp 4832   dom cdm 4834   ran crn 4835    o. ccom 4838   ` cfv 5582  (class class class)co 6290   Basecbs 15121   +g cplusg 15190  TopSetcts 15196   distcds 15199   TopOpenctopn 15320   topGenctg 15336   invgcminusg 16670   -gcsg 16671   *Metcxmt 18955   ballcbl 18957   MetOpencmopn 18960   toNrmGrp ctng 21593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-sup 7956  df-inf 7957  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-tset 15209  df-ds 15212  df-rest 15321  df-topn 15322  df-topgen 15342  df-sbg 16675  df-psmet 18962  df-xmet 18963  df-bl 18965  df-mopn 18966  df-top 19921  df-bases 19922  df-topon 19923  df-tng 21599
This theorem is referenced by:  tngngp2  21660  tchtopn  22200
  Copyright terms: Public domain W3C validator