MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngtopn Structured version   Unicode version

Theorem tngtopn 21290
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngbas.t  |-  T  =  ( G toNrmGrp  N )
tngtset.2  |-  D  =  ( dist `  T
)
tngtset.3  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
tngtopn  |-  ( ( G  e.  V  /\  N  e.  W )  ->  J  =  ( TopOpen `  T ) )

Proof of Theorem tngtopn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngbas.t . . 3  |-  T  =  ( G toNrmGrp  N )
2 tngtset.2 . . 3  |-  D  =  ( dist `  T
)
3 tngtset.3 . . 3  |-  J  =  ( MetOpen `  D )
41, 2, 3tngtset 21289 . 2  |-  ( ( G  e.  V  /\  N  e.  W )  ->  J  =  (TopSet `  T ) )
5 df-mopn 18542 . . . . . . . . 9  |-  MetOpen  =  ( x  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  x )
) )
65dmmptss 5509 . . . . . . . 8  |-  dom  MetOpen  C_  U. ran  *Met
76sseli 3495 . . . . . . 7  |-  ( D  e.  dom  MetOpen  ->  D  e.  U. ran  *Met )
8 eqid 2457 . . . . . . . . . . . . . . . . . 18  |-  ( -g `  G )  =  (
-g `  G )
91, 8tngds 21288 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  W  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T
) )
109, 2syl6eqr 2516 . . . . . . . . . . . . . . . 16  |-  ( N  e.  W  ->  ( N  o.  ( -g `  G ) )  =  D )
1110adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  V  /\  N  e.  W )  ->  ( N  o.  ( -g `  G ) )  =  D )
1211dmeqd 5215 . . . . . . . . . . . . . 14  |-  ( ( G  e.  V  /\  N  e.  W )  ->  dom  ( N  o.  ( -g `  G ) )  =  dom  D
)
13 dmcoss 5272 . . . . . . . . . . . . . . 15  |-  dom  ( N  o.  ( -g `  G ) )  C_  dom  ( -g `  G
)
14 eqid 2457 . . . . . . . . . . . . . . . . 17  |-  ( Base `  G )  =  (
Base `  G )
15 eqid 2457 . . . . . . . . . . . . . . . . 17  |-  ( +g  `  G )  =  ( +g  `  G )
16 eqid 2457 . . . . . . . . . . . . . . . . 17  |-  ( invg `  G )  =  ( invg `  G )
1714, 15, 16, 8grpsubfval 16219 . . . . . . . . . . . . . . . 16  |-  ( -g `  G )  =  ( x  e.  ( Base `  G ) ,  y  e.  ( Base `  G
)  |->  ( x ( +g  `  G ) ( ( invg `  G ) `  y
) ) )
18 ovex 6324 . . . . . . . . . . . . . . . 16  |-  ( x ( +g  `  G
) ( ( invg `  G ) `
 y ) )  e.  _V
1917, 18dmmpt2 6869 . . . . . . . . . . . . . . 15  |-  dom  ( -g `  G )  =  ( ( Base `  G
)  X.  ( Base `  G ) )
2013, 19sseqtri 3531 . . . . . . . . . . . . . 14  |-  dom  ( N  o.  ( -g `  G ) )  C_  ( ( Base `  G
)  X.  ( Base `  G ) )
2112, 20syl6eqssr 3550 . . . . . . . . . . . . 13  |-  ( ( G  e.  V  /\  N  e.  W )  ->  dom  D  C_  (
( Base `  G )  X.  ( Base `  G
) ) )
2221adantr 465 . . . . . . . . . . . 12  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  dom  D  C_  ( ( Base `  G )  X.  ( Base `  G
) ) )
23 dmss 5212 . . . . . . . . . . . 12  |-  ( dom 
D  C_  ( ( Base `  G )  X.  ( Base `  G
) )  ->  dom  dom 
D  C_  dom  ( (
Base `  G )  X.  ( Base `  G
) ) )
2422, 23syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  dom  dom  D  C_  dom  ( ( Base `  G
)  X.  ( Base `  G ) ) )
25 dmxpid 5232 . . . . . . . . . . 11  |-  dom  (
( Base `  G )  X.  ( Base `  G
) )  =  (
Base `  G )
2624, 25syl6sseq 3545 . . . . . . . . . 10  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  dom  dom  D  C_  ( Base `  G ) )
27 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  D  e.  U. ran  *Met )
28 xmetunirn 20966 . . . . . . . . . . . 12  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
2927, 28sylib 196 . . . . . . . . . . 11  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  D  e.  ( *Met `  dom  dom  D
) )
30 eqid 2457 . . . . . . . . . . . 12  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
3130mopnuni 21070 . . . . . . . . . . 11  |-  ( D  e.  ( *Met ` 
dom  dom  D )  ->  dom  dom  D  =  U. ( MetOpen `  D )
)
3229, 31syl 16 . . . . . . . . . 10  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  dom  dom  D  =  U. ( MetOpen `  D )
)
331, 14tngbas 21281 . . . . . . . . . . 11  |-  ( N  e.  W  ->  ( Base `  G )  =  ( Base `  T
) )
3433ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  -> 
( Base `  G )  =  ( Base `  T
) )
3526, 32, 343sstr3d 3541 . . . . . . . . 9  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  ->  U. ( MetOpen `  D )  C_  ( Base `  T
) )
36 sspwuni 4421 . . . . . . . . 9  |-  ( (
MetOpen `  D )  C_  ~P ( Base `  T
)  <->  U. ( MetOpen `  D
)  C_  ( Base `  T ) )
3735, 36sylibr 212 . . . . . . . 8  |-  ( ( ( G  e.  V  /\  N  e.  W
)  /\  D  e.  U.
ran  *Met )  -> 
( MetOpen `  D )  C_ 
~P ( Base `  T
) )
3837ex 434 . . . . . . 7  |-  ( ( G  e.  V  /\  N  e.  W )  ->  ( D  e.  U. ran  *Met  ->  ( MetOpen
`  D )  C_  ~P ( Base `  T
) ) )
397, 38syl5 32 . . . . . 6  |-  ( ( G  e.  V  /\  N  e.  W )  ->  ( D  e.  dom  MetOpen  ->  ( MetOpen `  D )  C_ 
~P ( Base `  T
) ) )
40 ndmfv 5896 . . . . . . 7  |-  ( -.  D  e.  dom  MetOpen  ->  ( MetOpen
`  D )  =  (/) )
41 0ss 3823 . . . . . . 7  |-  (/)  C_  ~P ( Base `  T )
4240, 41syl6eqss 3549 . . . . . 6  |-  ( -.  D  e.  dom  MetOpen  ->  ( MetOpen
`  D )  C_  ~P ( Base `  T
) )
4339, 42pm2.61d1 159 . . . . 5  |-  ( ( G  e.  V  /\  N  e.  W )  ->  ( MetOpen `  D )  C_ 
~P ( Base `  T
) )
443, 43syl5eqss 3543 . . . 4  |-  ( ( G  e.  V  /\  N  e.  W )  ->  J  C_  ~P ( Base `  T ) )
454, 44eqsstr3d 3534 . . 3  |-  ( ( G  e.  V  /\  N  e.  W )  ->  (TopSet `  T )  C_ 
~P ( Base `  T
) )
46 eqid 2457 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
47 eqid 2457 . . . 4  |-  (TopSet `  T )  =  (TopSet `  T )
4846, 47topnid 14853 . . 3  |-  ( (TopSet `  T )  C_  ~P ( Base `  T )  ->  (TopSet `  T )  =  ( TopOpen `  T
) )
4945, 48syl 16 . 2  |-  ( ( G  e.  V  /\  N  e.  W )  ->  (TopSet `  T )  =  ( TopOpen `  T
) )
504, 49eqtrd 2498 1  |-  ( ( G  e.  V  /\  N  e.  W )  ->  J  =  ( TopOpen `  T ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   U.cuni 4251    X. cxp 5006   dom cdm 5008   ran crn 5009    o. ccom 5012   ` cfv 5594  (class class class)co 6296   Basecbs 14644   +g cplusg 14712  TopSetcts 14718   distcds 14721   TopOpenctopn 14839   topGenctg 14855   invgcminusg 16181   -gcsg 16182   *Metcxmt 18530   ballcbl 18532   MetOpencmopn 18535   toNrmGrp ctng 21225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-tset 14731  df-ds 14734  df-rest 14840  df-topn 14841  df-topgen 14861  df-sbg 16186  df-psmet 18538  df-xmet 18539  df-bl 18541  df-mopn 18542  df-top 19526  df-bases 19528  df-topon 19529  df-tng 21231
This theorem is referenced by:  tngngp2  21292  tchtopn  21795
  Copyright terms: Public domain W3C validator