MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngnm Structured version   Unicode version

Theorem tngnm 21291
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngnm.t  |-  T  =  ( G toNrmGrp  N )
tngnm.x  |-  X  =  ( Base `  G
)
tngnm.a  |-  A  e. 
_V
Assertion
Ref Expression
tngnm  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  N  =  (
norm `  T )
)

Proof of Theorem tngnm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . 3  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  N : X --> A )
21feqmptd 5926 . 2  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  N  =  ( x  e.  X  |->  ( N `  x ) ) )
3 tngnm.x . . . . . . . 8  |-  X  =  ( Base `  G
)
4 eqid 2457 . . . . . . . 8  |-  ( -g `  G )  =  (
-g `  G )
53, 4grpsubf 16244 . . . . . . 7  |-  ( G  e.  Grp  ->  ( -g `  G ) : ( X  X.  X
) --> X )
65ad2antrr 725 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( -g `  G ) : ( X  X.  X ) --> X )
7 simpr 461 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  x  e.  X )
8 eqid 2457 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
93, 8grpidcl 16205 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
109ad2antrr 725 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( 0g `  G )  e.  X
)
11 opelxpi 5040 . . . . . . 7  |-  ( ( x  e.  X  /\  ( 0g `  G )  e.  X )  ->  <. x ,  ( 0g
`  G ) >.  e.  ( X  X.  X
) )
127, 10, 11syl2anc 661 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  <. x ,  ( 0g `  G
) >.  e.  ( X  X.  X ) )
13 fvco3 5950 . . . . . 6  |-  ( ( ( -g `  G
) : ( X  X.  X ) --> X  /\  <. x ,  ( 0g `  G )
>.  e.  ( X  X.  X ) )  -> 
( ( N  o.  ( -g `  G ) ) `  <. x ,  ( 0g `  G ) >. )  =  ( N `  ( ( -g `  G
) `  <. x ,  ( 0g `  G
) >. ) ) )
146, 12, 13syl2anc 661 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( ( N  o.  ( -g `  G ) ) `  <. x ,  ( 0g
`  G ) >.
)  =  ( N `
 ( ( -g `  G ) `  <. x ,  ( 0g `  G ) >. )
) )
15 df-ov 6299 . . . . 5  |-  ( x ( N  o.  ( -g `  G ) ) ( 0g `  G
) )  =  ( ( N  o.  ( -g `  G ) ) `
 <. x ,  ( 0g `  G )
>. )
16 df-ov 6299 . . . . . 6  |-  ( x ( -g `  G
) ( 0g `  G ) )  =  ( ( -g `  G
) `  <. x ,  ( 0g `  G
) >. )
1716fveq2i 5875 . . . . 5  |-  ( N `
 ( x (
-g `  G )
( 0g `  G
) ) )  =  ( N `  (
( -g `  G ) `
 <. x ,  ( 0g `  G )
>. ) )
1814, 15, 173eqtr4g 2523 . . . 4  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( x
( N  o.  ( -g `  G ) ) ( 0g `  G
) )  =  ( N `  ( x ( -g `  G
) ( 0g `  G ) ) ) )
193, 8, 4grpsubid1 16250 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( x ( -g `  G ) ( 0g
`  G ) )  =  x )
2019adantlr 714 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( x
( -g `  G ) ( 0g `  G
) )  =  x )
2120fveq2d 5876 . . . 4  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( N `  ( x ( -g `  G ) ( 0g
`  G ) ) )  =  ( N `
 x ) )
2218, 21eqtr2d 2499 . . 3  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( N `  x )  =  ( x ( N  o.  ( -g `  G ) ) ( 0g `  G ) ) )
2322mpteq2dva 4543 . 2  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  ( x  e.  X  |->  ( N `  x ) )  =  ( x  e.  X  |->  ( x ( N  o.  ( -g `  G
) ) ( 0g
`  G ) ) ) )
24 fvex 5882 . . . . . . . 8  |-  ( Base `  G )  e.  _V
253, 24eqeltri 2541 . . . . . . 7  |-  X  e. 
_V
26 tngnm.a . . . . . . 7  |-  A  e. 
_V
27 fex2 6754 . . . . . . 7  |-  ( ( N : X --> A  /\  X  e.  _V  /\  A  e.  _V )  ->  N  e.  _V )
2825, 26, 27mp3an23 1316 . . . . . 6  |-  ( N : X --> A  ->  N  e.  _V )
2928adantl 466 . . . . 5  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  N  e.  _V )
30 tngnm.t . . . . . 6  |-  T  =  ( G toNrmGrp  N )
3130, 3tngbas 21281 . . . . 5  |-  ( N  e.  _V  ->  X  =  ( Base `  T
) )
3229, 31syl 16 . . . 4  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  X  =  (
Base `  T )
)
3330, 4tngds 21288 . . . . . 6  |-  ( N  e.  _V  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T
) )
3429, 33syl 16 . . . . 5  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T ) )
35 eqidd 2458 . . . . 5  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  x  =  x )
3630, 8tng0 21283 . . . . . 6  |-  ( N  e.  _V  ->  ( 0g `  G )  =  ( 0g `  T
) )
3729, 36syl 16 . . . . 5  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  ( 0g `  G )  =  ( 0g `  T ) )
3834, 35, 37oveq123d 6317 . . . 4  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  ( x ( N  o.  ( -g `  G ) ) ( 0g `  G ) )  =  ( x ( dist `  T
) ( 0g `  T ) ) )
3932, 38mpteq12dv 4535 . . 3  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  ( x  e.  X  |->  ( x ( N  o.  ( -g `  G ) ) ( 0g `  G ) ) )  =  ( x  e.  ( Base `  T )  |->  ( x ( dist `  T
) ( 0g `  T ) ) ) )
40 eqid 2457 . . . 4  |-  ( norm `  T )  =  (
norm `  T )
41 eqid 2457 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
42 eqid 2457 . . . 4  |-  ( 0g
`  T )  =  ( 0g `  T
)
43 eqid 2457 . . . 4  |-  ( dist `  T )  =  (
dist `  T )
4440, 41, 42, 43nmfval 21235 . . 3  |-  ( norm `  T )  =  ( x  e.  ( Base `  T )  |->  ( x ( dist `  T
) ( 0g `  T ) ) )
4539, 44syl6eqr 2516 . 2  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  ( x  e.  X  |->  ( x ( N  o.  ( -g `  G ) ) ( 0g `  G ) ) )  =  (
norm `  T )
)
462, 23, 453eqtrd 2502 1  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  N  =  (
norm `  T )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   _Vcvv 3109   <.cop 4038    |-> cmpt 4515    X. cxp 5006    o. ccom 5012   -->wf 5590   ` cfv 5594  (class class class)co 6296   Basecbs 14644   distcds 14721   0gc0g 14857   Grpcgrp 16180   -gcsg 16182   normcnm 21223   toNrmGrp ctng 21225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-plusg 14725  df-tset 14731  df-ds 14734  df-0g 14859  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-grp 16184  df-minusg 16185  df-sbg 16186  df-nm 21229  df-tng 21231
This theorem is referenced by:  tngngp2  21292  tngngp  21294  tngnrg  21309  tchnmfval  21797  tchcph  21806
  Copyright terms: Public domain W3C validator