MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngnm Structured version   Unicode version

Theorem tngnm 20237
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngnm.t  |-  T  =  ( G toNrmGrp  N )
tngnm.x  |-  X  =  ( Base `  G
)
tngnm.a  |-  A  e. 
_V
Assertion
Ref Expression
tngnm  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  N  =  (
norm `  T )
)

Proof of Theorem tngnm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . 3  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  N : X --> A )
21feqmptd 5744 . 2  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  N  =  ( x  e.  X  |->  ( N `  x ) ) )
3 tngnm.x . . . . . . . 8  |-  X  =  ( Base `  G
)
4 eqid 2443 . . . . . . . 8  |-  ( -g `  G )  =  (
-g `  G )
53, 4grpsubf 15605 . . . . . . 7  |-  ( G  e.  Grp  ->  ( -g `  G ) : ( X  X.  X
) --> X )
65ad2antrr 725 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( -g `  G ) : ( X  X.  X ) --> X )
7 simpr 461 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  x  e.  X )
8 eqid 2443 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
93, 8grpidcl 15566 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
109ad2antrr 725 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( 0g `  G )  e.  X
)
11 opelxpi 4871 . . . . . . 7  |-  ( ( x  e.  X  /\  ( 0g `  G )  e.  X )  ->  <. x ,  ( 0g
`  G ) >.  e.  ( X  X.  X
) )
127, 10, 11syl2anc 661 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  <. x ,  ( 0g `  G
) >.  e.  ( X  X.  X ) )
13 fvco3 5768 . . . . . 6  |-  ( ( ( -g `  G
) : ( X  X.  X ) --> X  /\  <. x ,  ( 0g `  G )
>.  e.  ( X  X.  X ) )  -> 
( ( N  o.  ( -g `  G ) ) `  <. x ,  ( 0g `  G ) >. )  =  ( N `  ( ( -g `  G
) `  <. x ,  ( 0g `  G
) >. ) ) )
146, 12, 13syl2anc 661 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( ( N  o.  ( -g `  G ) ) `  <. x ,  ( 0g
`  G ) >.
)  =  ( N `
 ( ( -g `  G ) `  <. x ,  ( 0g `  G ) >. )
) )
15 df-ov 6094 . . . . 5  |-  ( x ( N  o.  ( -g `  G ) ) ( 0g `  G
) )  =  ( ( N  o.  ( -g `  G ) ) `
 <. x ,  ( 0g `  G )
>. )
16 df-ov 6094 . . . . . 6  |-  ( x ( -g `  G
) ( 0g `  G ) )  =  ( ( -g `  G
) `  <. x ,  ( 0g `  G
) >. )
1716fveq2i 5694 . . . . 5  |-  ( N `
 ( x (
-g `  G )
( 0g `  G
) ) )  =  ( N `  (
( -g `  G ) `
 <. x ,  ( 0g `  G )
>. ) )
1814, 15, 173eqtr4g 2500 . . . 4  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( x
( N  o.  ( -g `  G ) ) ( 0g `  G
) )  =  ( N `  ( x ( -g `  G
) ( 0g `  G ) ) ) )
193, 8, 4grpsubid1 15611 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( x ( -g `  G ) ( 0g
`  G ) )  =  x )
2019adantlr 714 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( x
( -g `  G ) ( 0g `  G
) )  =  x )
2120fveq2d 5695 . . . 4  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( N `  ( x ( -g `  G ) ( 0g
`  G ) ) )  =  ( N `
 x ) )
2218, 21eqtr2d 2476 . . 3  |-  ( ( ( G  e.  Grp  /\  N : X --> A )  /\  x  e.  X
)  ->  ( N `  x )  =  ( x ( N  o.  ( -g `  G ) ) ( 0g `  G ) ) )
2322mpteq2dva 4378 . 2  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  ( x  e.  X  |->  ( N `  x ) )  =  ( x  e.  X  |->  ( x ( N  o.  ( -g `  G
) ) ( 0g
`  G ) ) ) )
24 fvex 5701 . . . . . . . 8  |-  ( Base `  G )  e.  _V
253, 24eqeltri 2513 . . . . . . 7  |-  X  e. 
_V
26 tngnm.a . . . . . . 7  |-  A  e. 
_V
27 fex2 6532 . . . . . . 7  |-  ( ( N : X --> A  /\  X  e.  _V  /\  A  e.  _V )  ->  N  e.  _V )
2825, 26, 27mp3an23 1306 . . . . . 6  |-  ( N : X --> A  ->  N  e.  _V )
2928adantl 466 . . . . 5  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  N  e.  _V )
30 tngnm.t . . . . . 6  |-  T  =  ( G toNrmGrp  N )
3130, 3tngbas 20227 . . . . 5  |-  ( N  e.  _V  ->  X  =  ( Base `  T
) )
3229, 31syl 16 . . . 4  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  X  =  (
Base `  T )
)
3330, 4tngds 20234 . . . . . 6  |-  ( N  e.  _V  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T
) )
3429, 33syl 16 . . . . 5  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T ) )
35 eqidd 2444 . . . . 5  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  x  =  x )
3630, 8tng0 20229 . . . . . 6  |-  ( N  e.  _V  ->  ( 0g `  G )  =  ( 0g `  T
) )
3729, 36syl 16 . . . . 5  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  ( 0g `  G )  =  ( 0g `  T ) )
3834, 35, 37oveq123d 6112 . . . 4  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  ( x ( N  o.  ( -g `  G ) ) ( 0g `  G ) )  =  ( x ( dist `  T
) ( 0g `  T ) ) )
3932, 38mpteq12dv 4370 . . 3  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  ( x  e.  X  |->  ( x ( N  o.  ( -g `  G ) ) ( 0g `  G ) ) )  =  ( x  e.  ( Base `  T )  |->  ( x ( dist `  T
) ( 0g `  T ) ) ) )
40 eqid 2443 . . . 4  |-  ( norm `  T )  =  (
norm `  T )
41 eqid 2443 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
42 eqid 2443 . . . 4  |-  ( 0g
`  T )  =  ( 0g `  T
)
43 eqid 2443 . . . 4  |-  ( dist `  T )  =  (
dist `  T )
4440, 41, 42, 43nmfval 20181 . . 3  |-  ( norm `  T )  =  ( x  e.  ( Base `  T )  |->  ( x ( dist `  T
) ( 0g `  T ) ) )
4539, 44syl6eqr 2493 . 2  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  ( x  e.  X  |->  ( x ( N  o.  ( -g `  G ) ) ( 0g `  G ) ) )  =  (
norm `  T )
)
462, 23, 453eqtrd 2479 1  |-  ( ( G  e.  Grp  /\  N : X --> A )  ->  N  =  (
norm `  T )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2972   <.cop 3883    e. cmpt 4350    X. cxp 4838    o. ccom 4844   -->wf 5414   ` cfv 5418  (class class class)co 6091   Basecbs 14174   distcds 14247   0gc0g 14378   Grpcgrp 15410   -gcsg 15413   normcnm 20169   toNrmGrp ctng 20171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-plusg 14251  df-tset 14257  df-ds 14260  df-0g 14380  df-mnd 15415  df-grp 15545  df-minusg 15546  df-sbg 15547  df-nm 20175  df-tng 20177
This theorem is referenced by:  tngngp2  20238  tngngp  20240  tngnrg  20255  tchnmfval  20743  tchcph  20752
  Copyright terms: Public domain W3C validator