MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngp2 Structured version   Unicode version

Theorem tngngp2 21335
Description: A norm turns a group into a normed group iff the generated metric is in fact a metric. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp2.t  |-  T  =  ( G toNrmGrp  N )
tngngp2.x  |-  X  =  ( Base `  G
)
tngngp2.d  |-  D  =  ( dist `  T
)
Assertion
Ref Expression
tngngp2  |-  ( N : X --> RR  ->  ( T  e. NrmGrp  <->  ( G  e. 
Grp  /\  D  e.  ( Met `  X ) ) ) )

Proof of Theorem tngngp2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 21288 . . . . 5  |-  ( T  e. NrmGrp  ->  T  e.  Grp )
2 tngngp2.x . . . . . . . 8  |-  X  =  ( Base `  G
)
3 fvex 5858 . . . . . . . 8  |-  ( Base `  G )  e.  _V
42, 3eqeltri 2538 . . . . . . 7  |-  X  e. 
_V
5 reex 9572 . . . . . . 7  |-  RR  e.  _V
6 fex2 6728 . . . . . . 7  |-  ( ( N : X --> RR  /\  X  e.  _V  /\  RR  e.  _V )  ->  N  e.  _V )
74, 5, 6mp3an23 1314 . . . . . 6  |-  ( N : X --> RR  ->  N  e.  _V )
82a1i 11 . . . . . . 7  |-  ( N  e.  _V  ->  X  =  ( Base `  G
) )
9 tngngp2.t . . . . . . . 8  |-  T  =  ( G toNrmGrp  N )
109, 2tngbas 21324 . . . . . . 7  |-  ( N  e.  _V  ->  X  =  ( Base `  T
) )
11 eqid 2454 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
129, 11tngplusg 21325 . . . . . . . 8  |-  ( N  e.  _V  ->  ( +g  `  G )  =  ( +g  `  T
) )
1312oveqdr 6294 . . . . . . 7  |-  ( ( N  e.  _V  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
x ( +g  `  G
) y )  =  ( x ( +g  `  T ) y ) )
148, 10, 13grppropd 16270 . . . . . 6  |-  ( N  e.  _V  ->  ( G  e.  Grp  <->  T  e.  Grp ) )
157, 14syl 16 . . . . 5  |-  ( N : X --> RR  ->  ( G  e.  Grp  <->  T  e.  Grp ) )
161, 15syl5ibr 221 . . . 4  |-  ( N : X --> RR  ->  ( T  e. NrmGrp  ->  G  e. 
Grp ) )
1716imp 427 . . 3  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  G  e.  Grp )
18 ngpms 21289 . . . . . 6  |-  ( T  e. NrmGrp  ->  T  e.  MetSp )
1918adantl 464 . . . . 5  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  T  e.  MetSp )
20 eqid 2454 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
21 tngngp2.d . . . . . 6  |-  D  =  ( dist `  T
)
2220, 21msmet2 21132 . . . . 5  |-  ( T  e.  MetSp  ->  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( Met `  ( Base `  T ) ) )
2319, 22syl 16 . . . 4  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( D  |`  ( ( Base `  T )  X.  ( Base `  T
) ) )  e.  ( Met `  ( Base `  T ) ) )
24 eqid 2454 . . . . . . . . . 10  |-  ( -g `  G )  =  (
-g `  G )
252, 24grpsubf 16319 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( -g `  G ) : ( X  X.  X
) --> X )
2617, 25syl 16 . . . . . . . 8  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  (
-g `  G ) : ( X  X.  X ) --> X )
27 fco 5723 . . . . . . . 8  |-  ( ( N : X --> RR  /\  ( -g `  G ) : ( X  X.  X ) --> X )  ->  ( N  o.  ( -g `  G ) ) : ( X  X.  X ) --> RR )
2826, 27syldan 468 . . . . . . 7  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( N  o.  ( -g `  G ) ) : ( X  X.  X
) --> RR )
297adantr 463 . . . . . . . . . 10  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  N  e.  _V )
309, 24tngds 21331 . . . . . . . . . 10  |-  ( N  e.  _V  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T
) )
3129, 30syl 16 . . . . . . . . 9  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T
) )
3231, 21syl6reqr 2514 . . . . . . . 8  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  D  =  ( N  o.  ( -g `  G ) ) )
3332feq1d 5699 . . . . . . 7  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( D : ( X  X.  X ) --> RR  <->  ( N  o.  ( -g `  G ) ) : ( X  X.  X
) --> RR ) )
3428, 33mpbird 232 . . . . . 6  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  D : ( X  X.  X ) --> RR )
35 ffn 5713 . . . . . 6  |-  ( D : ( X  X.  X ) --> RR  ->  D  Fn  ( X  X.  X ) )
36 fnresdm 5672 . . . . . 6  |-  ( D  Fn  ( X  X.  X )  ->  ( D  |`  ( X  X.  X ) )  =  D )
3734, 35, 363syl 20 . . . . 5  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( D  |`  ( X  X.  X ) )  =  D )
3829, 10syl 16 . . . . . . 7  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  X  =  ( Base `  T
) )
3938sqxpeqd 5014 . . . . . 6  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( X  X.  X )  =  ( ( Base `  T )  X.  ( Base `  T ) ) )
4039reseq2d 5262 . . . . 5  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( D  |`  ( X  X.  X ) )  =  ( D  |`  (
( Base `  T )  X.  ( Base `  T
) ) ) )
4137, 40eqtr3d 2497 . . . 4  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  D  =  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) )
4238fveq2d 5852 . . . 4  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( Met `  X )  =  ( Met `  ( Base `  T ) ) )
4323, 41, 423eltr4d 2557 . . 3  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  D  e.  ( Met `  X
) )
4417, 43jca 530 . 2  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )
4515biimpa 482 . . . 4  |-  ( ( N : X --> RR  /\  G  e.  Grp )  ->  T  e.  Grp )
4645adantrr 714 . . 3  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  T  e.  Grp )
47 simprr 755 . . . . . . . 8  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  D  e.  ( Met `  X ) )
487adantr 463 . . . . . . . . . 10  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  N  e.  _V )
4948, 10syl 16 . . . . . . . . 9  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  X  =  (
Base `  T )
)
5049fveq2d 5852 . . . . . . . 8  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( Met `  X
)  =  ( Met `  ( Base `  T
) ) )
5147, 50eleqtrd 2544 . . . . . . 7  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  D  e.  ( Met `  ( Base `  T ) ) )
52 metf 21002 . . . . . . 7  |-  ( D  e.  ( Met `  ( Base `  T ) )  ->  D : ( ( Base `  T
)  X.  ( Base `  T ) ) --> RR )
5351, 52syl 16 . . . . . 6  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  D : ( ( Base `  T
)  X.  ( Base `  T ) ) --> RR )
54 ffn 5713 . . . . . 6  |-  ( D : ( ( Base `  T )  X.  ( Base `  T ) ) --> RR  ->  D  Fn  ( ( Base `  T
)  X.  ( Base `  T ) ) )
55 fnresdm 5672 . . . . . 6  |-  ( D  Fn  ( ( Base `  T )  X.  ( Base `  T ) )  ->  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  =  D )
5653, 54, 553syl 20 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  =  D )
5756, 51eqeltrd 2542 . . . 4  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( Met `  ( Base `  T ) ) )
5856fveq2d 5852 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( MetOpen `  ( D  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) )  =  (
MetOpen `  D ) )
59 simprl 754 . . . . . 6  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  G  e.  Grp )
60 eqid 2454 . . . . . . 7  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
619, 21, 60tngtopn 21333 . . . . . 6  |-  ( ( G  e.  Grp  /\  N  e.  _V )  ->  ( MetOpen `  D )  =  ( TopOpen `  T
) )
6259, 48, 61syl2anc 659 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( MetOpen `  D
)  =  ( TopOpen `  T ) )
6358, 62eqtr2d 2496 . . . 4  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( TopOpen `  T
)  =  ( MetOpen `  ( D  |`  ( (
Base `  T )  X.  ( Base `  T
) ) ) ) )
64 eqid 2454 . . . . 5  |-  ( TopOpen `  T )  =  (
TopOpen `  T )
6521reseq1i 5258 . . . . 5  |-  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  =  ( ( dist `  T )  |`  (
( Base `  T )  X.  ( Base `  T
) ) )
6664, 20, 65isms2 21122 . . . 4  |-  ( T  e.  MetSp 
<->  ( ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( Met `  ( Base `  T ) )  /\  ( TopOpen `  T
)  =  ( MetOpen `  ( D  |`  ( (
Base `  T )  X.  ( Base `  T
) ) ) ) ) )
6757, 63, 66sylanbrc 662 . . 3  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  T  e.  MetSp )
68 simpl 455 . . . . . . 7  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  N : X --> RR )
699, 2, 5tngnm 21334 . . . . . . 7  |-  ( ( G  e.  Grp  /\  N : X --> RR )  ->  N  =  (
norm `  T )
)
7059, 68, 69syl2anc 659 . . . . . 6  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  N  =  (
norm `  T )
)
718, 10eqtr3d 2497 . . . . . . . 8  |-  ( N  e.  _V  ->  ( Base `  G )  =  ( Base `  T
) )
7271, 12grpsubpropd 16342 . . . . . . 7  |-  ( N  e.  _V  ->  ( -g `  G )  =  ( -g `  T
) )
7348, 72syl 16 . . . . . 6  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( -g `  G
)  =  ( -g `  T ) )
7470, 73coeq12d 5156 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( N  o.  ( -g `  G ) )  =  ( (
norm `  T )  o.  ( -g `  T
) ) )
7548, 30syl 16 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T ) )
7674, 75eqtr3d 2497 . . . 4  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( ( norm `  T )  o.  ( -g `  T ) )  =  ( dist `  T
) )
77 eqimss 3541 . . . 4  |-  ( ( ( norm `  T
)  o.  ( -g `  T ) )  =  ( dist `  T
)  ->  ( ( norm `  T )  o.  ( -g `  T
) )  C_  ( dist `  T ) )
7876, 77syl 16 . . 3  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( ( norm `  T )  o.  ( -g `  T ) ) 
C_  ( dist `  T
) )
79 eqid 2454 . . . 4  |-  ( norm `  T )  =  (
norm `  T )
80 eqid 2454 . . . 4  |-  ( -g `  T )  =  (
-g `  T )
81 eqid 2454 . . . 4  |-  ( dist `  T )  =  (
dist `  T )
8279, 80, 81isngp 21285 . . 3  |-  ( T  e. NrmGrp 
<->  ( T  e.  Grp  /\  T  e.  MetSp  /\  (
( norm `  T )  o.  ( -g `  T
) )  C_  ( dist `  T ) ) )
8346, 67, 78, 82syl3anbrc 1178 . 2  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  T  e. NrmGrp )
8444, 83impbida 830 1  |-  ( N : X --> RR  ->  ( T  e. NrmGrp  <->  ( G  e. 
Grp  /\  D  e.  ( Met `  X ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   _Vcvv 3106    C_ wss 3461    X. cxp 4986    |` cres 4990    o. ccom 4992    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270   RRcr 9480   Basecbs 14719   +g cplusg 14787   distcds 14796   TopOpenctopn 14914   Grpcgrp 16255   -gcsg 16257   Metcme 18602   MetOpencmopn 18606   MetSpcmt 20990   normcnm 21266  NrmGrpcngp 21267   toNrmGrp ctng 21268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-plusg 14800  df-tset 14806  df-ds 14809  df-rest 14915  df-topn 14916  df-0g 14934  df-topgen 14936  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-grp 16259  df-minusg 16260  df-sbg 16261  df-psmet 18609  df-xmet 18610  df-met 18611  df-bl 18612  df-mopn 18613  df-top 19569  df-bases 19571  df-topon 19572  df-topsp 19573  df-xms 20992  df-ms 20993  df-nm 21272  df-ngp 21273  df-tng 21274
This theorem is referenced by:  tngngpd  21336  tngngp  21337  tngnrg  21352
  Copyright terms: Public domain W3C validator