MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngds Structured version   Unicode version

Theorem tngds 20237
Description: The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
tngbas.t  |-  T  =  ( G toNrmGrp  N )
tngds.2  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
tngds  |-  ( N  e.  V  ->  ( N  o.  .-  )  =  ( dist `  T
) )

Proof of Theorem tngds
StepHypRef Expression
1 dsid 14345 . . . 4  |-  dist  = Slot  ( dist `  ndx )
2 9re 10411 . . . . . 6  |-  9  e.  RR
3 1nn 10336 . . . . . . 7  |-  1  e.  NN
4 2nn0 10599 . . . . . . 7  |-  2  e.  NN0
5 9nn0 10606 . . . . . . 7  |-  9  e.  NN0
6 9lt10 10527 . . . . . . 7  |-  9  <  10
73, 4, 5, 6declti 10783 . . . . . 6  |-  9  < ; 1
2
82, 7gtneii 9489 . . . . 5  |- ; 1 2  =/=  9
9 dsndx 14344 . . . . . 6  |-  ( dist `  ndx )  = ; 1 2
10 tsetndx 14328 . . . . . 6  |-  (TopSet `  ndx )  =  9
119, 10neeq12i 2623 . . . . 5  |-  ( (
dist `  ndx )  =/=  (TopSet `  ndx )  <-> ; 1 2  =/=  9
)
128, 11mpbir 209 . . . 4  |-  ( dist `  ndx )  =/=  (TopSet ` 
ndx )
131, 12setsnid 14219 . . 3  |-  ( dist `  ( G sSet  <. ( dist `  ndx ) ,  ( N  o.  .-  ) >. ) )  =  ( dist `  (
( G sSet  <. ( dist `  ndx ) ,  ( N  o.  .-  ) >. ) sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  ( N  o.  .-  )
) >. ) )
14 tngds.2 . . . . . 6  |-  .-  =  ( -g `  G )
15 fvex 5704 . . . . . 6  |-  ( -g `  G )  e.  _V
1614, 15eqeltri 2513 . . . . 5  |-  .-  e.  _V
17 coexg 6531 . . . . 5  |-  ( ( N  e.  V  /\  .-  e.  _V )  -> 
( N  o.  .-  )  e.  _V )
1816, 17mpan2 671 . . . 4  |-  ( N  e.  V  ->  ( N  o.  .-  )  e. 
_V )
191setsid 14218 . . . 4  |-  ( ( G  e.  _V  /\  ( N  o.  .-  )  e.  _V )  ->  ( N  o.  .-  )  =  ( dist `  ( G sSet  <. ( dist `  ndx ) ,  ( N  o.  .-  ) >. )
) )
2018, 19sylan2 474 . . 3  |-  ( ( G  e.  _V  /\  N  e.  V )  ->  ( N  o.  .-  )  =  ( dist `  ( G sSet  <. ( dist `  ndx ) ,  ( N  o.  .-  ) >. ) ) )
21 tngbas.t . . . . 5  |-  T  =  ( G toNrmGrp  N )
22 eqid 2443 . . . . 5  |-  ( N  o.  .-  )  =  ( N  o.  .-  )
23 eqid 2443 . . . . 5  |-  ( MetOpen `  ( N  o.  .-  )
)  =  ( MetOpen `  ( N  o.  .-  )
)
2421, 14, 22, 23tngval 20228 . . . 4  |-  ( ( G  e.  _V  /\  N  e.  V )  ->  T  =  ( ( G sSet  <. ( dist `  ndx ) ,  ( N  o.  .-  ) >. ) sSet  <.
(TopSet `  ndx ) ,  ( MetOpen `  ( N  o.  .-  ) ) >.
) )
2524fveq2d 5698 . . 3  |-  ( ( G  e.  _V  /\  N  e.  V )  ->  ( dist `  T
)  =  ( dist `  ( ( G sSet  <. (
dist `  ndx ) ,  ( N  o.  .-  ) >. ) sSet  <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( N  o.  .-  ) ) >. )
) )
2613, 20, 253eqtr4a 2501 . 2  |-  ( ( G  e.  _V  /\  N  e.  V )  ->  ( N  o.  .-  )  =  ( dist `  T ) )
27 co02 5354 . . . . 5  |-  ( N  o.  (/) )  =  (/)
28 df-ds 14263 . . . . . 6  |-  dist  = Slot ; 1 2
2928str0 14215 . . . . 5  |-  (/)  =  (
dist `  (/) )
3027, 29eqtri 2463 . . . 4  |-  ( N  o.  (/) )  =  (
dist `  (/) )
31 fvprc 5688 . . . . . 6  |-  ( -.  G  e.  _V  ->  (
-g `  G )  =  (/) )
3214, 31syl5eq 2487 . . . . 5  |-  ( -.  G  e.  _V  ->  .-  =  (/) )
3332coeq2d 5005 . . . 4  |-  ( -.  G  e.  _V  ->  ( N  o.  .-  )  =  ( N  o.  (/) ) )
34 reldmtng 20227 . . . . . . 7  |-  Rel  dom toNrmGrp
3534ovprc1 6122 . . . . . 6  |-  ( -.  G  e.  _V  ->  ( G toNrmGrp  N )  =  (/) )
3621, 35syl5eq 2487 . . . . 5  |-  ( -.  G  e.  _V  ->  T  =  (/) )
3736fveq2d 5698 . . . 4  |-  ( -.  G  e.  _V  ->  (
dist `  T )  =  ( dist `  (/) ) )
3830, 33, 373eqtr4a 2501 . . 3  |-  ( -.  G  e.  _V  ->  ( N  o.  .-  )  =  ( dist `  T
) )
3938adantr 465 . 2  |-  ( ( -.  G  e.  _V  /\  N  e.  V )  ->  ( N  o.  .-  )  =  ( dist `  T ) )
4026, 39pm2.61ian 788 1  |-  ( N  e.  V  ->  ( N  o.  .-  )  =  ( dist `  T
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2609   _Vcvv 2975   (/)c0 3640   <.cop 3886    o. ccom 4847   ` cfv 5421  (class class class)co 6094   1c1 9286   2c2 10374   9c9 10381  ;cdc 10758   ndxcnx 14174   sSet csts 14175  TopSetcts 14247   distcds 14250   -gcsg 15416   MetOpencmopn 17809   toNrmGrp ctng 20174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-recs 6835  df-rdg 6869  df-er 7104  df-en 7314  df-dom 7315  df-sdom 7316  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-10 10391  df-n0 10583  df-z 10650  df-dec 10759  df-ndx 14180  df-slot 14181  df-sets 14183  df-tset 14260  df-ds 14263  df-tng 20180
This theorem is referenced by:  tngtset  20238  tngtopn  20239  tngnm  20240  tngngp2  20241  tngngpd  20242  tngnrg  20258  tchds  20749
  Copyright terms: Public domain W3C validator