MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tncp Structured version   Unicode version

Theorem tncp 25611
Description: There exist three non colinear points. (Contributed by FL, 3-Aug-2009.)
Hypothesis
Ref Expression
tncp.1  |-  P  = 
U. L
Assertion
Ref Expression
tncp  |-  ( L  e.  Plig  ->  E. a  e.  P  E. b  e.  P  E. c  e.  P  A. l  e.  L  -.  (
a  e.  l  /\  b  e.  l  /\  c  e.  l )
)
Distinct variable groups:    L, a,
b, c, l    P, a, b, c
Allowed substitution hint:    P( l)

Proof of Theorem tncp
StepHypRef Expression
1 tncp.1 . . . 4  |-  P  = 
U. L
21isplig 25610 . . 3  |-  ( L  e.  Plig  ->  ( L  e.  Plig  <->  ( A. a  e.  P  A. b  e.  P  ( a  =/=  b  ->  E! l  e.  L  ( a  e.  l  /\  b  e.  l ) )  /\  A. l  e.  L  E. a  e.  P  E. b  e.  P  (
a  =/=  b  /\  a  e.  l  /\  b  e.  l )  /\  E. a  e.  P  E. b  e.  P  E. c  e.  P  A. l  e.  L  -.  ( a  e.  l  /\  b  e.  l  /\  c  e.  l ) ) ) )
32ibi 243 . 2  |-  ( L  e.  Plig  ->  ( A. a  e.  P  A. b  e.  P  (
a  =/=  b  ->  E! l  e.  L  ( a  e.  l  /\  b  e.  l ) )  /\  A. l  e.  L  E. a  e.  P  E. b  e.  P  (
a  =/=  b  /\  a  e.  l  /\  b  e.  l )  /\  E. a  e.  P  E. b  e.  P  E. c  e.  P  A. l  e.  L  -.  ( a  e.  l  /\  b  e.  l  /\  c  e.  l ) ) )
43simp3d 1013 1  |-  ( L  e.  Plig  ->  E. a  e.  P  E. b  e.  P  E. c  e.  P  A. l  e.  L  -.  (
a  e.  l  /\  b  e.  l  /\  c  e.  l )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844    =/= wne 2600   A.wral 2756   E.wrex 2757   E!wreu 2758   U.cuni 4193   Pligcplig 25608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382
This theorem depends on definitions:  df-bi 187  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ral 2761  df-rex 2762  df-reu 2763  df-v 3063  df-uni 4194  df-plig 25609
This theorem is referenced by:  lpni  25612
  Copyright terms: Public domain W3C validator