MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdgsum2 Unicode version

Theorem tmdgsum2 18079
Description: For any neighborhood  U of  n X, there is a neighborhood  u of  X such that any sum of  n elements in  u sums to an element of  U. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tmdgsum.j  |-  J  =  ( TopOpen `  G )
tmdgsum.b  |-  B  =  ( Base `  G
)
tmdgsum2.t  |-  .x.  =  (.g
`  G )
tmdgsum2.1  |-  ( ph  ->  G  e. CMnd )
tmdgsum2.2  |-  ( ph  ->  G  e. TopMnd )
tmdgsum2.a  |-  ( ph  ->  A  e.  Fin )
tmdgsum2.u  |-  ( ph  ->  U  e.  J )
tmdgsum2.x  |-  ( ph  ->  X  e.  B )
tmdgsum2.3  |-  ( ph  ->  ( ( # `  A
)  .x.  X )  e.  U )
Assertion
Ref Expression
tmdgsum2  |-  ( ph  ->  E. u  e.  J  ( X  e.  u  /\  A. f  e.  ( u  ^m  A ) ( G  gsumg  f )  e.  U
) )
Distinct variable groups:    u, f, A    f, J, u    f, X, u    B, f, u   
f, G, u    U, f, u
Allowed substitution hints:    ph( u, f)    .x. ( u, f)

Proof of Theorem tmdgsum2
Dummy variables  g 
k  t  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2404 . . . . . . 7  |-  ( f  e.  ( B  ^m  A )  |->  ( G 
gsumg  f ) )  =  ( f  e.  ( B  ^m  A ) 
|->  ( G  gsumg  f ) )
21mptpreima 5322 . . . . . 6  |-  ( `' ( f  e.  ( B  ^m  A ) 
|->  ( G  gsumg  f ) ) " U )  =  {
f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U }
3 tmdgsum2.1 . . . . . . . 8  |-  ( ph  ->  G  e. CMnd )
4 tmdgsum2.2 . . . . . . . 8  |-  ( ph  ->  G  e. TopMnd )
5 tmdgsum2.a . . . . . . . 8  |-  ( ph  ->  A  e.  Fin )
6 tmdgsum.j . . . . . . . . 9  |-  J  =  ( TopOpen `  G )
7 tmdgsum.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
86, 7tmdgsum 18078 . . . . . . . 8  |-  ( ( G  e. CMnd  /\  G  e. TopMnd  /\  A  e.  Fin )  ->  ( f  e.  ( B  ^m  A
)  |->  ( G  gsumg  f ) )  e.  ( ( J  ^ k o  ~P A )  Cn  J ) )
93, 4, 5, 8syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( f  e.  ( B  ^m  A ) 
|->  ( G  gsumg  f ) )  e.  ( ( J  ^ k o  ~P A
)  Cn  J ) )
10 tmdgsum2.u . . . . . . 7  |-  ( ph  ->  U  e.  J )
11 cnima 17283 . . . . . . 7  |-  ( ( ( f  e.  ( B  ^m  A ) 
|->  ( G  gsumg  f ) )  e.  ( ( J  ^ k o  ~P A
)  Cn  J )  /\  U  e.  J
)  ->  ( `' ( f  e.  ( B  ^m  A ) 
|->  ( G  gsumg  f ) ) " U )  e.  ( J  ^ k o  ~P A ) )
129, 10, 11syl2anc 643 . . . . . 6  |-  ( ph  ->  ( `' ( f  e.  ( B  ^m  A )  |->  ( G 
gsumg  f ) ) " U )  e.  ( J  ^ k o  ~P A ) )
132, 12syl5eqelr 2489 . . . . 5  |-  ( ph  ->  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U }  e.  ( J  ^ k o  ~P A ) )
146, 7tmdtopon 18064 . . . . . . . 8  |-  ( G  e. TopMnd  ->  J  e.  (TopOn `  B ) )
15 topontop 16946 . . . . . . . 8  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )
164, 14, 153syl 19 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
17 xkopt 17640 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  e.  Fin )  ->  ( J  ^ k o  ~P A )  =  ( Xt_ `  ( A  X.  { J }
) ) )
1816, 5, 17syl2anc 643 . . . . . 6  |-  ( ph  ->  ( J  ^ k o  ~P A )  =  ( Xt_ `  ( A  X.  { J }
) ) )
19 fnconstg 5590 . . . . . . . 8  |-  ( J  e.  (TopOn `  B
)  ->  ( A  X.  { J } )  Fn  A )
204, 14, 193syl 19 . . . . . . 7  |-  ( ph  ->  ( A  X.  { J } )  Fn  A
)
21 eqid 2404 . . . . . . . 8  |-  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( A 
\  z ) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y
) )  /\  x  =  X_ y  e.  A  ( g `  y
) ) }  =  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( ( A  X.  { J } ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y ) )  /\  x  =  X_ y  e.  A  ( g `  y ) ) }
2221ptval 17555 . . . . . . 7  |-  ( ( A  e.  Fin  /\  ( A  X.  { J } )  Fn  A
)  ->  ( Xt_ `  ( A  X.  { J } ) )  =  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( A 
\  z ) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y
) )  /\  x  =  X_ y  e.  A  ( g `  y
) ) } ) )
235, 20, 22syl2anc 643 . . . . . 6  |-  ( ph  ->  ( Xt_ `  ( A  X.  { J }
) )  =  (
topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( A 
\  z ) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y
) )  /\  x  =  X_ y  e.  A  ( g `  y
) ) } ) )
2418, 23eqtrd 2436 . . . . 5  |-  ( ph  ->  ( J  ^ k o  ~P A )  =  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( A 
\  z ) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y
) )  /\  x  =  X_ y  e.  A  ( g `  y
) ) } ) )
2513, 24eleqtrd 2480 . . . 4  |-  ( ph  ->  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U }  e.  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( A 
\  z ) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y
) )  /\  x  =  X_ y  e.  A  ( g `  y
) ) } ) )
26 tmdgsum2.x . . . . . . 7  |-  ( ph  ->  X  e.  B )
27 fconst6g 5591 . . . . . . 7  |-  ( X  e.  B  ->  ( A  X.  { X }
) : A --> B )
2826, 27syl 16 . . . . . 6  |-  ( ph  ->  ( A  X.  { X } ) : A --> B )
29 fvex 5701 . . . . . . . 8  |-  ( Base `  G )  e.  _V
307, 29eqeltri 2474 . . . . . . 7  |-  B  e. 
_V
31 elmapg 6990 . . . . . . 7  |-  ( ( B  e.  _V  /\  A  e.  Fin )  ->  ( ( A  X.  { X } )  e.  ( B  ^m  A
)  <->  ( A  X.  { X } ) : A --> B ) )
3230, 5, 31sylancr 645 . . . . . 6  |-  ( ph  ->  ( ( A  X.  { X } )  e.  ( B  ^m  A
)  <->  ( A  X.  { X } ) : A --> B ) )
3328, 32mpbird 224 . . . . 5  |-  ( ph  ->  ( A  X.  { X } )  e.  ( B  ^m  A ) )
34 fconstmpt 4880 . . . . . . . 8  |-  ( A  X.  { X }
)  =  ( k  e.  A  |->  X )
3534oveq2i 6051 . . . . . . 7  |-  ( G 
gsumg  ( A  X.  { X } ) )  =  ( G  gsumg  ( k  e.  A  |->  X ) )
36 cmnmnd 15382 . . . . . . . . 9  |-  ( G  e. CMnd  ->  G  e.  Mnd )
373, 36syl 16 . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
38 tmdgsum2.t . . . . . . . . 9  |-  .x.  =  (.g
`  G )
397, 38gsumconst 15487 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  A  e.  Fin  /\  X  e.  B )  ->  ( G  gsumg  ( k  e.  A  |->  X ) )  =  ( ( # `  A
)  .x.  X )
)
4037, 5, 26, 39syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  X ) )  =  ( ( # `  A
)  .x.  X )
)
4135, 40syl5eq 2448 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( A  X.  { X } ) )  =  ( ( # `  A
)  .x.  X )
)
42 tmdgsum2.3 . . . . . 6  |-  ( ph  ->  ( ( # `  A
)  .x.  X )  e.  U )
4341, 42eqeltrd 2478 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( A  X.  { X } ) )  e.  U )
44 oveq2 6048 . . . . . . 7  |-  ( f  =  ( A  X.  { X } )  -> 
( G  gsumg  f )  =  ( G  gsumg  ( A  X.  { X } ) ) )
4544eleq1d 2470 . . . . . 6  |-  ( f  =  ( A  X.  { X } )  -> 
( ( G  gsumg  f )  e.  U  <->  ( G  gsumg  ( A  X.  { X } ) )  e.  U ) )
4645elrab 3052 . . . . 5  |-  ( ( A  X.  { X } )  e.  {
f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } 
<->  ( ( A  X.  { X } )  e.  ( B  ^m  A
)  /\  ( G  gsumg  ( A  X.  { X } ) )  e.  U ) )
4733, 43, 46sylanbrc 646 . . . 4  |-  ( ph  ->  ( A  X.  { X } )  e.  {
f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } )
48 tg2 16985 . . . 4  |-  ( ( { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U }  e.  ( topGen `  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( A 
\  z ) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y
) )  /\  x  =  X_ y  e.  A  ( g `  y
) ) } )  /\  ( A  X.  { X } )  e. 
{ f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } )  ->  E. t  e.  {
x  |  E. g
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J } ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y ) )  /\  x  =  X_ y  e.  A  ( g `  y ) ) }  ( ( A  X.  { X } )  e.  t  /\  t  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } ) )
4925, 47, 48syl2anc 643 . . 3  |-  ( ph  ->  E. t  e.  {
x  |  E. g
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J } ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y ) )  /\  x  =  X_ y  e.  A  ( g `  y ) ) }  ( ( A  X.  { X } )  e.  t  /\  t  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } ) )
50 eleq2 2465 . . . . 5  |-  ( t  =  x  ->  (
( A  X.  { X } )  e.  t  <-> 
( A  X.  { X } )  e.  x
) )
51 sseq1 3329 . . . . 5  |-  ( t  =  x  ->  (
t  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } 
<->  x  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )
5250, 51anbi12d 692 . . . 4  |-  ( t  =  x  ->  (
( ( A  X.  { X } )  e.  t  /\  t  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } )  <->  ( ( A  X.  { X }
)  e.  x  /\  x  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) ) )
5352rexab2 3061 . . 3  |-  ( E. t  e.  { x  |  E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( A 
\  z ) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y
) )  /\  x  =  X_ y  e.  A  ( g `  y
) ) }  (
( A  X.  { X } )  e.  t  /\  t  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } )  <->  E. x
( E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( ( A  X.  { J } ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y ) )  /\  x  =  X_ y  e.  A  ( g `  y ) )  /\  ( ( A  X.  { X } )  e.  x  /\  x  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } ) ) )
5449, 53sylib 189 . 2  |-  ( ph  ->  E. x ( E. g ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( ( A  X.  { J } ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y ) )  /\  x  =  X_ y  e.  A  ( g `  y ) )  /\  ( ( A  X.  { X } )  e.  x  /\  x  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } ) ) )
55 toponuni 16947 . . . . . . . . . . . . . 14  |-  ( J  e.  (TopOn `  B
)  ->  B  =  U. J )
564, 14, 553syl 19 . . . . . . . . . . . . 13  |-  ( ph  ->  B  =  U. J
)
5756ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  B  =  U. J )
5857ineq1d 3501 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  -> 
( B  i^i  |^| ran  g )  =  ( U. J  i^i  |^| ran  g ) )
5916ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  J  e.  Top )
60 simplrl 737 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  -> 
g  Fn  A )
61 simplrr 738 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  A. y  e.  A  ( g `  y
)  e.  ( ( A  X.  { J } ) `  y
) )
62 fvconst2g 5904 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  Top  /\  y  e.  A )  ->  ( ( A  X.  { J } ) `  y )  =  J )
6362eleq2d 2471 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  y  e.  A )  ->  ( ( g `  y )  e.  ( ( A  X.  { J } ) `  y
)  <->  ( g `  y )  e.  J
) )
6463ralbidva 2682 . . . . . . . . . . . . . . . 16  |-  ( J  e.  Top  ->  ( A. y  e.  A  ( g `  y
)  e.  ( ( A  X.  { J } ) `  y
)  <->  A. y  e.  A  ( g `  y
)  e.  J ) )
6559, 64syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  -> 
( A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J } ) `  y
)  <->  A. y  e.  A  ( g `  y
)  e.  J ) )
6661, 65mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  A. y  e.  A  ( g `  y
)  e.  J )
67 ffnfv 5853 . . . . . . . . . . . . . 14  |-  ( g : A --> J  <->  ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  J
) )
6860, 66, 67sylanbrc 646 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  -> 
g : A --> J )
69 frn 5556 . . . . . . . . . . . . 13  |-  ( g : A --> J  ->  ran  g  C_  J )
7068, 69syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  ran  g  C_  J )
715ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  A  e.  Fin )
72 dffn4 5618 . . . . . . . . . . . . . 14  |-  ( g  Fn  A  <->  g : A -onto-> ran  g )
7360, 72sylib 189 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  -> 
g : A -onto-> ran  g )
74 fofi 7351 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  g : A -onto-> ran  g
)  ->  ran  g  e. 
Fin )
7571, 73, 74syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  ran  g  e.  Fin )
76 eqid 2404 . . . . . . . . . . . . 13  |-  U. J  =  U. J
7776rintopn 16937 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ran  g  C_  J  /\  ran  g  e.  Fin )  ->  ( U. J  i^i  |^| ran  g )  e.  J )
7859, 70, 75, 77syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  -> 
( U. J  i^i  |^|
ran  g )  e.  J )
7958, 78eqeltrd 2478 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  -> 
( B  i^i  |^| ran  g )  e.  J
)
8026ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  X  e.  B )
81 fconstmpt 4880 . . . . . . . . . . . . . 14  |-  ( A  X.  { X }
)  =  ( y  e.  A  |->  X )
82 simprl 733 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  -> 
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )
)
8381, 82syl5eqelr 2489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  -> 
( y  e.  A  |->  X )  e.  X_ y  e.  A  (
g `  y )
)
84 mptelixpg 7058 . . . . . . . . . . . . . 14  |-  ( A  e.  Fin  ->  (
( y  e.  A  |->  X )  e.  X_ y  e.  A  (
g `  y )  <->  A. y  e.  A  X  e.  ( g `  y
) ) )
8571, 84syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  -> 
( ( y  e.  A  |->  X )  e.  X_ y  e.  A  ( g `  y
)  <->  A. y  e.  A  X  e.  ( g `  y ) ) )
8683, 85mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  A. y  e.  A  X  e.  ( g `  y ) )
87 eleq2 2465 . . . . . . . . . . . . . 14  |-  ( z  =  ( g `  y )  ->  ( X  e.  z  <->  X  e.  ( g `  y
) ) )
8887ralrn 5832 . . . . . . . . . . . . 13  |-  ( g  Fn  A  ->  ( A. z  e.  ran  g  X  e.  z  <->  A. y  e.  A  X  e.  ( g `  y
) ) )
8960, 88syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  -> 
( A. z  e. 
ran  g  X  e.  z  <->  A. y  e.  A  X  e.  ( g `  y ) ) )
9086, 89mpbird 224 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  A. z  e.  ran  g  X  e.  z
)
91 elrint 4051 . . . . . . . . . . 11  |-  ( X  e.  ( B  i^i  |^|
ran  g )  <->  ( X  e.  B  /\  A. z  e.  ran  g  X  e.  z ) )
9280, 90, 91sylanbrc 646 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  X  e.  ( B  i^i  |^| ran  g ) )
9330inex1 4304 . . . . . . . . . . . . 13  |-  ( B  i^i  |^| ran  g )  e.  _V
94 ixpconstg 7030 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  ( B  i^i  |^| ran  g )  e.  _V )  ->  X_ y  e.  A  ( B  i^i  |^| ran  g )  =  ( ( B  i^i  |^| ran  g )  ^m  A
) )
9571, 93, 94sylancl 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  X_ y  e.  A  ( B  i^i  |^| ran  g )  =  ( ( B  i^i  |^| ran  g )  ^m  A
) )
96 inss2 3522 . . . . . . . . . . . . . . 15  |-  ( B  i^i  |^| ran  g ) 
C_  |^| ran  g
97 fnfvelrn 5826 . . . . . . . . . . . . . . . 16  |-  ( ( g  Fn  A  /\  y  e.  A )  ->  ( g `  y
)  e.  ran  g
)
98 intss1 4025 . . . . . . . . . . . . . . . 16  |-  ( ( g `  y )  e.  ran  g  ->  |^| ran  g  C_  (
g `  y )
)
9997, 98syl 16 . . . . . . . . . . . . . . 15  |-  ( ( g  Fn  A  /\  y  e.  A )  ->  |^| ran  g  C_  ( g `  y
) )
10096, 99syl5ss 3319 . . . . . . . . . . . . . 14  |-  ( ( g  Fn  A  /\  y  e.  A )  ->  ( B  i^i  |^| ran  g )  C_  (
g `  y )
)
101100ralrimiva 2749 . . . . . . . . . . . . 13  |-  ( g  Fn  A  ->  A. y  e.  A  ( B  i^i  |^| ran  g ) 
C_  ( g `  y ) )
102 ss2ixp 7034 . . . . . . . . . . . . 13  |-  ( A. y  e.  A  ( B  i^i  |^| ran  g ) 
C_  ( g `  y )  ->  X_ y  e.  A  ( B  i^i  |^| ran  g ) 
C_  X_ y  e.  A  ( g `  y
) )
10360, 101, 1023syl 19 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  X_ y  e.  A  ( B  i^i  |^| ran  g )  C_  X_ y  e.  A  ( g `  y ) )
10495, 103eqsstr3d 3343 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  -> 
( ( B  i^i  |^|
ran  g )  ^m  A )  C_  X_ y  e.  A  ( g `  y ) )
105 ssrab 3381 . . . . . . . . . . . . 13  |-  ( X_ y  e.  A  (
g `  y )  C_ 
{ f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U }  <->  ( X_ y  e.  A  (
g `  y )  C_  ( B  ^m  A
)  /\  A. f  e.  X_  y  e.  A  ( g `  y
) ( G  gsumg  f )  e.  U ) )
106105simprbi 451 . . . . . . . . . . . 12  |-  ( X_ y  e.  A  (
g `  y )  C_ 
{ f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U }  ->  A. f  e.  X_  y  e.  A  ( g `  y ) ( G 
gsumg  f )  e.  U
)
107106ad2antll 710 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  A. f  e.  X_  y  e.  A  ( g `  y ) ( G 
gsumg  f )  e.  U
)
108 ssralv 3367 . . . . . . . . . . 11  |-  ( ( ( B  i^i  |^| ran  g )  ^m  A
)  C_  X_ y  e.  A  ( g `  y )  ->  ( A. f  e.  X_  y  e.  A  ( g `  y ) ( G 
gsumg  f )  e.  U  ->  A. f  e.  ( ( B  i^i  |^| ran  g )  ^m  A
) ( G  gsumg  f )  e.  U ) )
109104, 107, 108sylc 58 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  A. f  e.  (
( B  i^i  |^| ran  g )  ^m  A
) ( G  gsumg  f )  e.  U )
110 eleq2 2465 . . . . . . . . . . . 12  |-  ( u  =  ( B  i^i  |^|
ran  g )  -> 
( X  e.  u  <->  X  e.  ( B  i^i  |^|
ran  g ) ) )
111 oveq1 6047 . . . . . . . . . . . . 13  |-  ( u  =  ( B  i^i  |^|
ran  g )  -> 
( u  ^m  A
)  =  ( ( B  i^i  |^| ran  g )  ^m  A
) )
112111raleqdv 2870 . . . . . . . . . . . 12  |-  ( u  =  ( B  i^i  |^|
ran  g )  -> 
( A. f  e.  ( u  ^m  A
) ( G  gsumg  f )  e.  U  <->  A. f  e.  ( ( B  i^i  |^|
ran  g )  ^m  A ) ( G 
gsumg  f )  e.  U
) )
113110, 112anbi12d 692 . . . . . . . . . . 11  |-  ( u  =  ( B  i^i  |^|
ran  g )  -> 
( ( X  e.  u  /\  A. f  e.  ( u  ^m  A
) ( G  gsumg  f )  e.  U )  <->  ( X  e.  ( B  i^i  |^| ran  g )  /\  A. f  e.  ( ( B  i^i  |^| ran  g )  ^m  A ) ( G  gsumg  f )  e.  U
) ) )
114113rspcev 3012 . . . . . . . . . 10  |-  ( ( ( B  i^i  |^| ran  g )  e.  J  /\  ( X  e.  ( B  i^i  |^| ran  g )  /\  A. f  e.  ( ( B  i^i  |^| ran  g )  ^m  A ) ( G  gsumg  f )  e.  U
) )  ->  E. u  e.  J  ( X  e.  u  /\  A. f  e.  ( u  ^m  A
) ( G  gsumg  f )  e.  U ) )
11579, 92, 109, 114syl12anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  (
g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )
) )  /\  (
( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } ) )  ->  E. u  e.  J  ( X  e.  u  /\  A. f  e.  ( u  ^m  A ) ( G  gsumg  f )  e.  U
) )
116115ex 424 . . . . . . . 8  |-  ( (
ph  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J } ) `  y
) ) )  -> 
( ( ( A  X.  { X }
)  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } )  ->  E. u  e.  J  ( X  e.  u  /\  A. f  e.  ( u  ^m  A
) ( G  gsumg  f )  e.  U ) ) )
1171163adantr3 1118 . . . . . . 7  |-  ( (
ph  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J } ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y ) ) )  ->  ( ( ( A  X.  { X } )  e.  X_ y  e.  A  (
g `  y )  /\  X_ y  e.  A  ( g `  y
)  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } )  ->  E. u  e.  J  ( X  e.  u  /\  A. f  e.  ( u  ^m  A
) ( G  gsumg  f )  e.  U ) ) )
118 eleq2 2465 . . . . . . . . 9  |-  ( x  =  X_ y  e.  A  ( g `  y
)  ->  ( ( A  X.  { X }
)  e.  x  <->  ( A  X.  { X } )  e.  X_ y  e.  A  ( g `  y
) ) )
119 sseq1 3329 . . . . . . . . 9  |-  ( x  =  X_ y  e.  A  ( g `  y
)  ->  ( x  C_ 
{ f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U }  <->  X_ y  e.  A  ( g `  y )  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } ) )
120118, 119anbi12d 692 . . . . . . . 8  |-  ( x  =  X_ y  e.  A  ( g `  y
)  ->  ( (
( A  X.  { X } )  e.  x  /\  x  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } )  <->  ( ( A  X.  { X }
)  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } ) ) )
121120imbi1d 309 . . . . . . 7  |-  ( x  =  X_ y  e.  A  ( g `  y
)  ->  ( (
( ( A  X.  { X } )  e.  x  /\  x  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } )  ->  E. u  e.  J  ( X  e.  u  /\  A. f  e.  ( u  ^m  A
) ( G  gsumg  f )  e.  U ) )  <-> 
( ( ( A  X.  { X }
)  e.  X_ y  e.  A  ( g `  y )  /\  X_ y  e.  A  ( g `  y )  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } )  ->  E. u  e.  J  ( X  e.  u  /\  A. f  e.  ( u  ^m  A
) ( G  gsumg  f )  e.  U ) ) ) )
122117, 121syl5ibrcom 214 . . . . . 6  |-  ( (
ph  /\  ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J } ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y ) ) )  ->  ( x  = 
X_ y  e.  A  ( g `  y
)  ->  ( (
( A  X.  { X } )  e.  x  /\  x  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } )  ->  E. u  e.  J  ( X  e.  u  /\  A. f  e.  ( u  ^m  A
) ( G  gsumg  f )  e.  U ) ) ) )
123122expimpd 587 . . . . 5  |-  ( ph  ->  ( ( ( g  Fn  A  /\  A. y  e.  A  (
g `  y )  e.  ( ( A  X.  { J } ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y ) )  /\  x  =  X_ y  e.  A  ( g `  y ) )  -> 
( ( ( A  X.  { X }
)  e.  x  /\  x  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } )  ->  E. u  e.  J  ( X  e.  u  /\  A. f  e.  ( u  ^m  A
) ( G  gsumg  f )  e.  U ) ) ) )
124123exlimdv 1643 . . . 4  |-  ( ph  ->  ( E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y
)  e.  ( ( A  X.  { J } ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y ) )  /\  x  =  X_ y  e.  A  ( g `  y ) )  -> 
( ( ( A  X.  { X }
)  e.  x  /\  x  C_  { f  e.  ( B  ^m  A
)  |  ( G 
gsumg  f )  e.  U } )  ->  E. u  e.  J  ( X  e.  u  /\  A. f  e.  ( u  ^m  A
) ( G  gsumg  f )  e.  U ) ) ) )
125124imp3a 421 . . 3  |-  ( ph  ->  ( ( E. g
( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J } ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( A  \  z
) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y ) )  /\  x  =  X_ y  e.  A  ( g `  y ) )  /\  ( ( A  X.  { X } )  e.  x  /\  x  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } ) )  ->  E. u  e.  J  ( X  e.  u  /\  A. f  e.  ( u  ^m  A ) ( G  gsumg  f )  e.  U
) ) )
126125exlimdv 1643 . 2  |-  ( ph  ->  ( E. x ( E. g ( ( g  Fn  A  /\  A. y  e.  A  ( g `  y )  e.  ( ( A  X.  { J }
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( A 
\  z ) ( g `  y )  =  U. ( ( A  X.  { J } ) `  y
) )  /\  x  =  X_ y  e.  A  ( g `  y
) )  /\  (
( A  X.  { X } )  e.  x  /\  x  C_  { f  e.  ( B  ^m  A )  |  ( G  gsumg  f )  e.  U } ) )  ->  E. u  e.  J  ( X  e.  u  /\  A. f  e.  ( u  ^m  A ) ( G  gsumg  f )  e.  U
) ) )
12754, 126mpd 15 1  |-  ( ph  ->  E. u  e.  J  ( X  e.  u  /\  A. f  e.  ( u  ^m  A ) ( G  gsumg  f )  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721   {cab 2390   A.wral 2666   E.wrex 2667   {crab 2670   _Vcvv 2916    \ cdif 3277    i^i cin 3279    C_ wss 3280   ~Pcpw 3759   {csn 3774   U.cuni 3975   |^|cint 4010    e. cmpt 4226    X. cxp 4835   `'ccnv 4836   ran crn 4838   "cima 4840    Fn wfn 5408   -->wf 5409   -onto->wfo 5411   ` cfv 5413  (class class class)co 6040    ^m cmap 6977   X_cixp 7022   Fincfn 7068   #chash 11573   Basecbs 13424   TopOpenctopn 13604   topGenctg 13620   Xt_cpt 13621    gsumg cgsu 13679   Mndcmnd 14639  .gcmg 14644  CMndccmn 15367   Topctop 16913  TopOnctopon 16914    Cn ccn 17242    ^ k o cxko 17546  TopMndctmd 18053
This theorem is referenced by:  tsmsxp  18137
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-fzo 11091  df-seq 11279  df-hash 11574  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-rest 13605  df-topgen 13622  df-pt 13623  df-0g 13682  df-gsum 13683  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-plusf 14646  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cn 17245  df-cnp 17246  df-cmp 17404  df-tx 17547  df-xko 17548  df-tmd 18055
  Copyright terms: Public domain W3C validator