MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdgsum Structured version   Unicode version

Theorem tmdgsum 19566
Description: In a topological monoid, the group sum operation is a continuous function from the function space to the base topology. This theorem is not true when  A is infinite, because in this case for any basic open set of the domain one of the factors will be the whole space, so by varying the value of the functions to sum at this index, one can achieve any desired sum. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tmdgsum.j  |-  J  =  ( TopOpen `  G )
tmdgsum.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
tmdgsum  |-  ( ( G  e. CMnd  /\  G  e. TopMnd  /\  A  e.  Fin )  ->  ( x  e.  ( B  ^m  A
)  |->  ( G  gsumg  x ) )  e.  ( ( J  ^ko  ~P A )  Cn  J ) )
Distinct variable groups:    x, A    x, J    x, B    x, G

Proof of Theorem tmdgsum
Dummy variables  k  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6098 . . . . . . . 8  |-  ( w  =  (/)  ->  ( B  ^m  w )  =  ( B  ^m  (/) ) )
21mpteq1d 4370 . . . . . . 7  |-  ( w  =  (/)  ->  ( x  e.  ( B  ^m  w )  |->  ( G 
gsumg  x ) )  =  ( x  e.  ( B  ^m  (/) )  |->  ( G  gsumg  x ) ) )
3 xpeq1 4850 . . . . . . . . . 10  |-  ( w  =  (/)  ->  ( w  X.  { J }
)  =  ( (/)  X. 
{ J } ) )
4 0xp 4913 . . . . . . . . . 10  |-  ( (/)  X. 
{ J } )  =  (/)
53, 4syl6eq 2489 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( w  X.  { J }
)  =  (/) )
65fveq2d 5692 . . . . . . . 8  |-  ( w  =  (/)  ->  ( Xt_ `  ( w  X.  { J } ) )  =  ( Xt_ `  (/) ) )
76oveq1d 6105 . . . . . . 7  |-  ( w  =  (/)  ->  ( (
Xt_ `  ( w  X.  { J } ) )  Cn  J )  =  ( ( Xt_ `  (/) )  Cn  J
) )
82, 7eleq12d 2509 . . . . . 6  |-  ( w  =  (/)  ->  ( ( x  e.  ( B  ^m  w )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J )  <->  ( x  e.  ( B  ^m  (/) )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (/) )  Cn  J ) ) )
98imbi2d 316 . . . . 5  |-  ( w  =  (/)  ->  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  w )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J ) )  <->  ( ( G  e. CMnd  /\  G  e. TopMnd
)  ->  ( x  e.  ( B  ^m  (/) )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (/) )  Cn  J ) ) ) )
10 oveq2 6098 . . . . . . . 8  |-  ( w  =  y  ->  ( B  ^m  w )  =  ( B  ^m  y
) )
1110mpteq1d 4370 . . . . . . 7  |-  ( w  =  y  ->  (
x  e.  ( B  ^m  w )  |->  ( G  gsumg  x ) )  =  ( x  e.  ( B  ^m  y ) 
|->  ( G  gsumg  x ) ) )
12 xpeq1 4850 . . . . . . . . 9  |-  ( w  =  y  ->  (
w  X.  { J } )  =  ( y  X.  { J } ) )
1312fveq2d 5692 . . . . . . . 8  |-  ( w  =  y  ->  ( Xt_ `  ( w  X.  { J } ) )  =  ( Xt_ `  (
y  X.  { J } ) ) )
1413oveq1d 6105 . . . . . . 7  |-  ( w  =  y  ->  (
( Xt_ `  ( w  X.  { J }
) )  Cn  J
)  =  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )
1511, 14eleq12d 2509 . . . . . 6  |-  ( w  =  y  ->  (
( x  e.  ( B  ^m  w ) 
|->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J )  <->  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) ) )
1615imbi2d 316 . . . . 5  |-  ( w  =  y  ->  (
( ( G  e. CMnd  /\  G  e. TopMnd )  -> 
( x  e.  ( B  ^m  w ) 
|->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J ) )  <->  ( ( G  e. CMnd  /\  G  e. TopMnd
)  ->  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) ) ) )
17 oveq2 6098 . . . . . . . 8  |-  ( w  =  ( y  u. 
{ z } )  ->  ( B  ^m  w )  =  ( B  ^m  ( y  u.  { z } ) ) )
1817mpteq1d 4370 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ( x  e.  ( B  ^m  w
)  |->  ( G  gsumg  x ) )  =  ( x  e.  ( B  ^m  ( y  u.  {
z } ) ) 
|->  ( G  gsumg  x ) ) )
19 xpeq1 4850 . . . . . . . . 9  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  X.  { J } )  =  ( ( y  u. 
{ z } )  X.  { J }
) )
2019fveq2d 5692 . . . . . . . 8  |-  ( w  =  ( y  u. 
{ z } )  ->  ( Xt_ `  (
w  X.  { J } ) )  =  ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) ) )
2120oveq1d 6105 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( Xt_ `  ( w  X.  { J } ) )  Cn  J )  =  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) )
2218, 21eleq12d 2509 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( x  e.  ( B  ^m  w )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J )  <->  ( x  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) ) )
2322imbi2d 316 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  w
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( w  X.  { J } ) )  Cn  J ) )  <->  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) ) ) )
24 oveq2 6098 . . . . . . . 8  |-  ( w  =  A  ->  ( B  ^m  w )  =  ( B  ^m  A
) )
2524mpteq1d 4370 . . . . . . 7  |-  ( w  =  A  ->  (
x  e.  ( B  ^m  w )  |->  ( G  gsumg  x ) )  =  ( x  e.  ( B  ^m  A ) 
|->  ( G  gsumg  x ) ) )
26 xpeq1 4850 . . . . . . . . 9  |-  ( w  =  A  ->  (
w  X.  { J } )  =  ( A  X.  { J } ) )
2726fveq2d 5692 . . . . . . . 8  |-  ( w  =  A  ->  ( Xt_ `  ( w  X.  { J } ) )  =  ( Xt_ `  ( A  X.  { J }
) ) )
2827oveq1d 6105 . . . . . . 7  |-  ( w  =  A  ->  (
( Xt_ `  ( w  X.  { J }
) )  Cn  J
)  =  ( (
Xt_ `  ( A  X.  { J } ) )  Cn  J ) )
2925, 28eleq12d 2509 . . . . . 6  |-  ( w  =  A  ->  (
( x  e.  ( B  ^m  w ) 
|->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J )  <->  ( x  e.  ( B  ^m  A
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( A  X.  { J } ) )  Cn  J ) ) )
3029imbi2d 316 . . . . 5  |-  ( w  =  A  ->  (
( ( G  e. CMnd  /\  G  e. TopMnd )  -> 
( x  e.  ( B  ^m  w ) 
|->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J ) )  <->  ( ( G  e. CMnd  /\  G  e. TopMnd
)  ->  ( x  e.  ( B  ^m  A
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( A  X.  { J } ) )  Cn  J ) ) ) )
31 elmapfn 7231 . . . . . . . . . 10  |-  ( x  e.  ( B  ^m  (/) )  ->  x  Fn  (/) )
32 fn0 5527 . . . . . . . . . 10  |-  ( x  Fn  (/)  <->  x  =  (/) )
3331, 32sylib 196 . . . . . . . . 9  |-  ( x  e.  ( B  ^m  (/) )  ->  x  =  (/) )
3433oveq2d 6106 . . . . . . . 8  |-  ( x  e.  ( B  ^m  (/) )  ->  ( G  gsumg  x )  =  ( G 
gsumg  (/) ) )
35 eqid 2441 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
3635gsum0 15503 . . . . . . . 8  |-  ( G 
gsumg  (/) )  =  ( 0g
`  G )
3734, 36syl6eq 2489 . . . . . . 7  |-  ( x  e.  ( B  ^m  (/) )  ->  ( G  gsumg  x )  =  ( 0g
`  G ) )
3837mpteq2ia 4371 . . . . . 6  |-  ( x  e.  ( B  ^m  (/) )  |->  ( G  gsumg  x ) )  =  ( x  e.  ( B  ^m  (/) )  |->  ( 0g `  G ) )
39 0ex 4419 . . . . . . . 8  |-  (/)  e.  _V
40 tmdgsum.j . . . . . . . . . 10  |-  J  =  ( TopOpen `  G )
41 tmdgsum.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
4240, 41tmdtopon 19552 . . . . . . . . 9  |-  ( G  e. TopMnd  ->  J  e.  (TopOn `  B ) )
4342adantl 463 . . . . . . . 8  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  J  e.  (TopOn `  B ) )
444fveq2i 5691 . . . . . . . . . 10  |-  ( Xt_ `  ( (/)  X.  { J } ) )  =  ( Xt_ `  (/) )
4544eqcomi 2445 . . . . . . . . 9  |-  ( Xt_ `  (/) )  =  ( Xt_ `  ( (/)  X.  { J } ) )
4645pttoponconst 19070 . . . . . . . 8  |-  ( (
(/)  e.  _V  /\  J  e.  (TopOn `  B )
)  ->  ( Xt_ `  (/) )  e.  (TopOn `  ( B  ^m  (/) ) ) )
4739, 43, 46sylancr 658 . . . . . . 7  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( Xt_ `  (/) )  e.  (TopOn `  ( B  ^m  (/) ) ) )
48 tmdmnd 19546 . . . . . . . . 9  |-  ( G  e. TopMnd  ->  G  e.  Mnd )
4948adantl 463 . . . . . . . 8  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  G  e.  Mnd )
5041, 35mndidcl 15435 . . . . . . . 8  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  B )
5149, 50syl 16 . . . . . . 7  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( 0g `  G )  e.  B
)
5247, 43, 51cnmptc 19135 . . . . . 6  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  (/) )  |->  ( 0g `  G ) )  e.  ( (
Xt_ `  (/) )  Cn  J ) )
5338, 52syl5eqel 2525 . . . . 5  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  (/) )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (/) )  Cn  J ) )
54 oveq2 6098 . . . . . . . . . . 11  |-  ( x  =  w  ->  ( G  gsumg  x )  =  ( G  gsumg  w ) )
5554cbvmptv 4380 . . . . . . . . . 10  |-  ( x  e.  ( B  ^m  ( y  u.  {
z } ) ) 
|->  ( G  gsumg  x ) )  =  ( w  e.  ( B  ^m  ( y  u.  { z } ) )  |->  ( G 
gsumg  w ) )
56 eqid 2441 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
57 simpl1l 1034 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  G  e. CMnd )
58 simp2l 1009 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  y  e.  Fin )
59 snfi 7386 . . . . . . . . . . . . . 14  |-  { z }  e.  Fin
60 unfi 7575 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Fin  /\  { z }  e.  Fin )  ->  ( y  u. 
{ z } )  e.  Fin )
6158, 59, 60sylancl 657 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( y  u.  { z } )  e.  Fin )
6261adantr 462 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( y  u.  { z } )  e.  Fin )
63 elmapi 7230 . . . . . . . . . . . . 13  |-  ( w  e.  ( B  ^m  ( y  u.  {
z } ) )  ->  w : ( y  u.  { z } ) --> B )
6463adantl 463 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  w :
( y  u.  {
z } ) --> B )
65 fvex 5698 . . . . . . . . . . . . . 14  |-  ( 0g
`  G )  e. 
_V
6665a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( 0g `  G )  e.  _V )
6764, 62, 66fdmfifsupp 7626 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  w finSupp  ( 0g
`  G ) )
68 simpl2r 1037 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  -.  z  e.  y )
69 disjsn 3933 . . . . . . . . . . . . 13  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
7068, 69sylibr 212 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( y  i^i  { z } )  =  (/) )
71 eqidd 2442 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( y  u.  { z } )  =  ( y  u. 
{ z } ) )
7241, 35, 56, 57, 62, 64, 67, 70, 71gsumsplit 16413 . . . . . . . . . . 11  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( G  gsumg  w )  =  ( ( G  gsumg  ( w  |`  y
) ) ( +g  `  G ) ( G 
gsumg  ( w  |`  { z } ) ) ) )
7372mpteq2dva 4375 . . . . . . . . . 10  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  w ) )  =  ( w  e.  ( B  ^m  ( y  u.  { z } ) )  |->  ( ( G  gsumg  ( w  |`  y
) ) ( +g  `  G ) ( G 
gsumg  ( w  |`  { z } ) ) ) ) )
7455, 73syl5eq 2485 . . . . . . . . 9  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( x  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  x ) )  =  ( w  e.  ( B  ^m  ( y  u.  { z } ) )  |->  ( ( G  gsumg  ( w  |`  y
) ) ( +g  `  G ) ( G 
gsumg  ( w  |`  { z } ) ) ) ) )
75 simp1r 1008 . . . . . . . . . 10  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  G  e. TopMnd )
7675, 42syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  J  e.  (TopOn `  B ) )
77 eqid 2441 . . . . . . . . . . . 12  |-  ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) )  =  (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )
7877pttoponconst 19070 . . . . . . . . . . 11  |-  ( ( ( y  u.  {
z } )  e. 
Fin  /\  J  e.  (TopOn `  B ) )  ->  ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  e.  (TopOn `  ( B  ^m  (
y  u.  { z } ) ) ) )
7961, 76, 78syl2anc 656 . . . . . . . . . 10  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) )  e.  (TopOn `  ( B  ^m  (
y  u.  { z } ) ) ) )
80 toponuni 18432 . . . . . . . . . . . . . 14  |-  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  e.  (TopOn `  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( B  ^m  ( y  u.  {
z } ) )  =  U. ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) ) )
8179, 80syl 16 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( B  ^m  ( y  u.  {
z } ) )  =  U. ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) ) )
8281mpteq1d 4370 . . . . . . . . . . . 12  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( w  |`  y )
)  =  ( w  e.  U. ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) )  |->  ( w  |`  y ) ) )
83 topontop 18431 . . . . . . . . . . . . . . 15  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )
8475, 42, 833syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  J  e.  Top )
85 fconst6g 5596 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  (
( y  u.  {
z } )  X. 
{ J } ) : ( y  u. 
{ z } ) --> Top )
8684, 85syl 16 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( (
y  u.  { z } )  X.  { J } ) : ( y  u.  { z } ) --> Top )
87 ssun1 3516 . . . . . . . . . . . . . 14  |-  y  C_  ( y  u.  {
z } )
8887a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  y  C_  ( y  u.  {
z } ) )
89 eqid 2441 . . . . . . . . . . . . . 14  |-  U. ( Xt_ `  ( ( y  u.  { z } )  X.  { J } ) )  = 
U. ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )
90 xpssres 5141 . . . . . . . . . . . . . . . . 17  |-  ( y 
C_  ( y  u. 
{ z } )  ->  ( ( ( y  u.  { z } )  X.  { J } )  |`  y
)  =  ( y  X.  { J }
) )
9187, 90ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  u.  {
z } )  X. 
{ J } )  |`  y )  =  ( y  X.  { J } )
9291eqcomi 2445 . . . . . . . . . . . . . . 15  |-  ( y  X.  { J }
)  =  ( ( ( y  u.  {
z } )  X. 
{ J } )  |`  y )
9392fveq2i 5691 . . . . . . . . . . . . . 14  |-  ( Xt_ `  ( y  X.  { J } ) )  =  ( Xt_ `  (
( ( y  u. 
{ z } )  X.  { J }
)  |`  y ) )
9489, 77, 93ptrescn 19112 . . . . . . . . . . . . 13  |-  ( ( ( y  u.  {
z } )  e. 
Fin  /\  ( (
y  u.  { z } )  X.  { J } ) : ( y  u.  { z } ) --> Top  /\  y  C_  ( y  u. 
{ z } ) )  ->  ( w  e.  U. ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  |->  ( w  |`  y ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  ( Xt_ `  ( y  X.  { J } ) ) ) )
9561, 86, 88, 94syl3anc 1213 . . . . . . . . . . . 12  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  U. ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  |->  ( w  |`  y ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  ( Xt_ `  ( y  X.  { J } ) ) ) )
9682, 95eqeltrd 2515 . . . . . . . . . . 11  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( w  |`  y )
)  e.  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  Cn  ( Xt_ `  (
y  X.  { J } ) ) ) )
97 eqid 2441 . . . . . . . . . . . . 13  |-  ( Xt_ `  ( y  X.  { J } ) )  =  ( Xt_ `  (
y  X.  { J } ) )
9897pttoponconst 19070 . . . . . . . . . . . 12  |-  ( ( y  e.  Fin  /\  J  e.  (TopOn `  B
) )  ->  ( Xt_ `  ( y  X. 
{ J } ) )  e.  (TopOn `  ( B  ^m  y
) ) )
9958, 76, 98syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( Xt_ `  ( y  X.  { J } ) )  e.  (TopOn `  ( B  ^m  y ) ) )
100 simp3 985 . . . . . . . . . . 11  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )
101 oveq2 6098 . . . . . . . . . . 11  |-  ( x  =  ( w  |`  y )  ->  ( G  gsumg  x )  =  ( G  gsumg  ( w  |`  y
) ) )
10279, 96, 99, 100, 101cnmpt11 19136 . . . . . . . . . 10  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  ( w  |`  y
) ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) )
10364feqmptd 5741 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  w  =  ( k  e.  ( y  u.  { z } )  |->  ( w `
 k ) ) )
104103reseq1d 5105 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( w  |` 
{ z } )  =  ( ( k  e.  ( y  u. 
{ z } ) 
|->  ( w `  k
) )  |`  { z } ) )
105 ssun2 3517 . . . . . . . . . . . . . . . 16  |-  { z }  C_  ( y  u.  { z } )
106 resmpt 5153 . . . . . . . . . . . . . . . 16  |-  ( { z }  C_  (
y  u.  { z } )  ->  (
( k  e.  ( y  u.  { z } )  |->  ( w `
 k ) )  |`  { z } )  =  ( k  e. 
{ z }  |->  ( w `  k ) ) )
107105, 106ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  ( y  u.  { z } )  |->  ( w `  k ) )  |`  { z } )  =  ( k  e. 
{ z }  |->  ( w `  k ) )
108104, 107syl6eq 2489 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( w  |` 
{ z } )  =  ( k  e. 
{ z }  |->  ( w `  k ) ) )
109108oveq2d 6106 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( G  gsumg  ( w  |`  { z } ) )  =  ( G  gsumg  ( k  e.  {
z }  |->  ( w `
 k ) ) ) )
110 cmnmnd 16285 . . . . . . . . . . . . . . 15  |-  ( G  e. CMnd  ->  G  e.  Mnd )
11157, 110syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  G  e.  Mnd )
112 vex 2973 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
113112a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  z  e.  _V )
114 ssnid 3903 . . . . . . . . . . . . . . . 16  |-  z  e. 
{ z }
115 elun2 3521 . . . . . . . . . . . . . . . 16  |-  ( z  e.  { z }  ->  z  e.  ( y  u.  { z } ) )
116114, 115mp1i 12 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  z  e.  ( y  u.  {
z } ) )
11764, 116ffvelrnd 5841 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( w `  z )  e.  B
)
118 fveq2 5688 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  (
w `  k )  =  ( w `  z ) )
11941, 118gsumsn 16441 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Mnd  /\  z  e.  _V  /\  (
w `  z )  e.  B )  ->  ( G  gsumg  ( k  e.  {
z }  |->  ( w `
 k ) ) )  =  ( w `
 z ) )
120111, 113, 117, 119syl3anc 1213 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( G  gsumg  ( k  e.  { z }  |->  ( w `  k ) ) )  =  ( w `  z ) )
121109, 120eqtrd 2473 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( G  gsumg  ( w  |`  { z } ) )  =  ( w `  z
) )
122121mpteq2dva 4375 . . . . . . . . . . 11  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  ( w  |`  { z } ) ) )  =  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( w `  z ) ) )
12381mpteq1d 4370 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( w `  z ) )  =  ( w  e.  U. ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) )  |->  ( w `
 z ) ) )
124114, 115mp1i 12 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  z  e.  ( y  u.  {
z } ) )
12589, 77ptpjcn 19084 . . . . . . . . . . . . . 14  |-  ( ( ( y  u.  {
z } )  e. 
Fin  /\  ( (
y  u.  { z } )  X.  { J } ) : ( y  u.  { z } ) --> Top  /\  z  e.  ( y  u.  { z } ) )  ->  ( w  e.  U. ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  |->  ( w `  z ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  ( ( ( y  u.  {
z } )  X. 
{ J } ) `
 z ) ) )
12661, 86, 124, 125syl3anc 1213 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  U. ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  |->  ( w `  z ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  ( ( ( y  u.  {
z } )  X. 
{ J } ) `
 z ) ) )
127123, 126eqeltrd 2515 . . . . . . . . . . . 12  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( w `  z ) )  e.  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  Cn  ( ( ( y  u.  { z } )  X.  { J } ) `  z
) ) )
128 fvconst2g 5928 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  z  e.  ( y  u.  { z } ) )  ->  ( (
( y  u.  {
z } )  X. 
{ J } ) `
 z )  =  J )
12984, 124, 128syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( (
( y  u.  {
z } )  X. 
{ J } ) `
 z )  =  J )
130129oveq2d 6106 . . . . . . . . . . . 12  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( ( Xt_ `  ( ( y  u.  { z } )  X.  { J } ) )  Cn  ( ( ( y  u.  { z } )  X.  { J } ) `  z
) )  =  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) )
131127, 130eleqtrd 2517 . . . . . . . . . . 11  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( w `  z ) )  e.  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  Cn  J ) )
132122, 131eqeltrd 2515 . . . . . . . . . 10  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  ( w  |`  { z } ) ) )  e.  ( ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) )  Cn  J
) )
13340, 56, 75, 79, 102, 132cnmpt1plusg 19558 . . . . . . . . 9  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( ( G  gsumg  ( w  |`  y
) ) ( +g  `  G ) ( G 
gsumg  ( w  |`  { z } ) ) ) )  e.  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  Cn  J ) )
13474, 133eqeltrd 2515 . . . . . . . 8  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( x  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) )
1351343expia 1184 . . . . . . 7  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
) )  ->  (
( x  e.  ( B  ^m  y ) 
|->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J )  ->  (
x  e.  ( B  ^m  ( y  u. 
{ z } ) )  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  Cn  J ) ) )
136135expcom 435 . . . . . 6  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( G  e. CMnd  /\  G  e. TopMnd
)  ->  ( (
x  e.  ( B  ^m  y )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J )  ->  (
x  e.  ( B  ^m  ( y  u. 
{ z } ) )  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  Cn  J ) ) ) )
137136a2d 26 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  y )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  -> 
( ( G  e. CMnd  /\  G  e. TopMnd )  -> 
( x  e.  ( B  ^m  ( y  u.  { z } ) )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) ) ) )
1389, 16, 23, 30, 53, 137findcard2s 7549 . . . 4  |-  ( A  e.  Fin  ->  (
( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  A )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  ( A  X.  { J }
) )  Cn  J
) ) )
139138com12 31 . . 3  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( A  e.  Fin  ->  ( x  e.  ( B  ^m  A
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( A  X.  { J } ) )  Cn  J ) ) )
1401393impia 1179 . 2  |-  ( ( G  e. CMnd  /\  G  e. TopMnd  /\  A  e.  Fin )  ->  ( x  e.  ( B  ^m  A
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( A  X.  { J } ) )  Cn  J ) )
14142, 83syl 16 . . . . 5  |-  ( G  e. TopMnd  ->  J  e.  Top )
142 xkopt 19128 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  Fin )  ->  ( J  ^ko  ~P A )  =  ( Xt_ `  ( A  X.  { J }
) ) )
143141, 142sylan 468 . . . 4  |-  ( ( G  e. TopMnd  /\  A  e. 
Fin )  ->  ( J  ^ko  ~P A )  =  (
Xt_ `  ( A  X.  { J } ) ) )
1441433adant1 1001 . . 3  |-  ( ( G  e. CMnd  /\  G  e. TopMnd  /\  A  e.  Fin )  ->  ( J  ^ko  ~P A
)  =  ( Xt_ `  ( A  X.  { J } ) ) )
145144oveq1d 6105 . 2  |-  ( ( G  e. CMnd  /\  G  e. TopMnd  /\  A  e.  Fin )  ->  ( ( J  ^ko  ~P A )  Cn  J
)  =  ( (
Xt_ `  ( A  X.  { J } ) )  Cn  J ) )
146140, 145eleqtrrd 2518 1  |-  ( ( G  e. CMnd  /\  G  e. TopMnd  /\  A  e.  Fin )  ->  ( x  e.  ( B  ^m  A
)  |->  ( G  gsumg  x ) )  e.  ( ( J  ^ko  ~P A )  Cn  J ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   _Vcvv 2970    u. cun 3323    i^i cin 3324    C_ wss 3325   (/)c0 3634   ~Pcpw 3857   {csn 3874   U.cuni 4088    e. cmpt 4347    X. cxp 4834    |` cres 4838    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090    ^m cmap 7210   Fincfn 7306   Basecbs 14170   +g cplusg 14234   TopOpenctopn 14356   Xt_cpt 14373   0gc0g 14374    gsumg cgsu 14375   Mndcmnd 15405  CMndccmn 16270   Topctop 18398  TopOnctopon 18399    Cn ccn 18728    ^ko cxko 19034  TopMndctmd 19541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-fzo 11545  df-seq 11803  df-hash 12100  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-rest 14357  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-plusf 15412  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-top 18403  df-bases 18405  df-topon 18406  df-topsp 18407  df-cn 18731  df-cnp 18732  df-cmp 18890  df-tx 19035  df-xko 19036  df-tmd 19543
This theorem is referenced by:  tmdgsum2  19567
  Copyright terms: Public domain W3C validator