MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  times2d Structured version   Unicode version

Theorem times2d 10822
Description: A number times 2. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
2timesd.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
times2d  |-  ( ph  ->  ( A  x.  2 )  =  ( A  +  A ) )

Proof of Theorem times2d
StepHypRef Expression
1 2timesd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 times2 10695 . 2  |-  ( A  e.  CC  ->  ( A  x.  2 )  =  ( A  +  A ) )
31, 2syl 17 1  |-  ( ph  ->  ( A  x.  2 )  =  ( A  +  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1405    e. wcel 1842  (class class class)co 6277   CCcc 9519    + caddc 9524    x. cmul 9526   2c2 10625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rrecex 9593  ax-cnre 9594
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-iota 5532  df-fv 5576  df-ov 6280  df-2 10634
This theorem is referenced by:  climcndslem1  13810  climcndslem2  13811  sadcaddlem  14314  dvexp3  22669  chordthmlem  23486  chordthmlem2  23487  chordthmlem4  23489  logfaclbnd  23876  rplogsumlem1  24048  nexple  28443
  Copyright terms: Public domain W3C validator