MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  thema1b Structured version   Unicode version

Theorem thema1b 1581
Description: Stoic logic Thema 1 (part b). The other part of thema 1 of Stoic logic; see thema1a 1580. (Contributed by David A. Wheeler, 16-Feb-2019.)
Hypothesis
Ref Expression
thema1.1  |-  ( (
ph  /\  ps )  ->  th )
Assertion
Ref Expression
thema1b  |-  ( ( ps  /\  -.  th )  ->  -.  ph )

Proof of Theorem thema1b
StepHypRef Expression
1 thema1.1 . . 3  |-  ( (
ph  /\  ps )  ->  th )
21ancoms 453 . 2  |-  ( ( ps  /\  ph )  ->  th )
32thema1a 1580 1  |-  ( ( ps  /\  -.  th )  ->  -.  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator