MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgval2 Structured version   Unicode version

Theorem tgval2 19324
Description: Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 19337) that  ( topGen `  B ) is indeed a topology (on  U. B; see unitg 19335). (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval2  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) ) } )
Distinct variable groups:    x, y,
z, B    x, V, y, z

Proof of Theorem tgval2
StepHypRef Expression
1 tgval 19323 . 2  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
2 inss1 3700 . . . . . . . . 9  |-  ( B  i^i  ~P x ) 
C_  B
32unissi 4253 . . . . . . . 8  |-  U. ( B  i^i  ~P x ) 
C_  U. B
43sseli 3482 . . . . . . 7  |-  ( y  e.  U. ( B  i^i  ~P x )  ->  y  e.  U. B )
54pm4.71ri 633 . . . . . 6  |-  ( y  e.  U. ( B  i^i  ~P x )  <-> 
( y  e.  U. B  /\  y  e.  U. ( B  i^i  ~P x
) ) )
65ralbii 2872 . . . . 5  |-  ( A. y  e.  x  y  e.  U. ( B  i^i  ~P x )  <->  A. y  e.  x  ( y  e.  U. B  /\  y  e.  U. ( B  i^i  ~P x ) ) )
7 r19.26 2968 . . . . 5  |-  ( A. y  e.  x  (
y  e.  U. B  /\  y  e.  U. ( B  i^i  ~P x ) )  <->  ( A. y  e.  x  y  e.  U. B  /\  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) ) )
86, 7bitri 249 . . . 4  |-  ( A. y  e.  x  y  e.  U. ( B  i^i  ~P x )  <->  ( A. y  e.  x  y  e.  U. B  /\  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) ) )
9 dfss3 3476 . . . 4  |-  ( x 
C_  U. ( B  i^i  ~P x )  <->  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) )
10 dfss3 3476 . . . . 5  |-  ( x 
C_  U. B  <->  A. y  e.  x  y  e.  U. B )
11 elin 3669 . . . . . . . . . . 11  |-  ( z  e.  ( B  i^i  ~P x )  <->  ( z  e.  B  /\  z  e.  ~P x ) )
1211anbi2i 694 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) )  <-> 
( y  e.  z  /\  ( z  e.  B  /\  z  e. 
~P x ) ) )
13 an12 795 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  ( z  e.  B  /\  z  e.  ~P x ) )  <->  ( z  e.  B  /\  (
y  e.  z  /\  z  e.  ~P x
) ) )
1412, 13bitri 249 . . . . . . . . 9  |-  ( ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) )  <-> 
( z  e.  B  /\  ( y  e.  z  /\  z  e.  ~P x ) ) )
1514exbii 1652 . . . . . . . 8  |-  ( E. z ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) )  <->  E. z
( z  e.  B  /\  ( y  e.  z  /\  z  e.  ~P x ) ) )
16 eluni 4233 . . . . . . . 8  |-  ( y  e.  U. ( B  i^i  ~P x )  <->  E. z ( y  e.  z  /\  z  e.  ( B  i^i  ~P x ) ) )
17 df-rex 2797 . . . . . . . 8  |-  ( E. z  e.  B  ( y  e.  z  /\  z  e.  ~P x
)  <->  E. z ( z  e.  B  /\  (
y  e.  z  /\  z  e.  ~P x
) ) )
1815, 16, 173bitr4i 277 . . . . . . 7  |-  ( y  e.  U. ( B  i^i  ~P x )  <->  E. z  e.  B  ( y  e.  z  /\  z  e.  ~P x ) )
19 selpw 4000 . . . . . . . . 9  |-  ( z  e.  ~P x  <->  z  C_  x )
2019anbi2i 694 . . . . . . . 8  |-  ( ( y  e.  z  /\  z  e.  ~P x
)  <->  ( y  e.  z  /\  z  C_  x ) )
2120rexbii 2943 . . . . . . 7  |-  ( E. z  e.  B  ( y  e.  z  /\  z  e.  ~P x
)  <->  E. z  e.  B  ( y  e.  z  /\  z  C_  x
) )
2218, 21bitr2i 250 . . . . . 6  |-  ( E. z  e.  B  ( y  e.  z  /\  z  C_  x )  <->  y  e.  U. ( B  i^i  ~P x ) )
2322ralbii 2872 . . . . 5  |-  ( A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x )  <->  A. y  e.  x  y  e.  U. ( B  i^i  ~P x ) )
2410, 23anbi12i 697 . . . 4  |-  ( ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) )  <-> 
( A. y  e.  x  y  e.  U. B  /\  A. y  e.  x  y  e.  U. ( B  i^i  ~P x
) ) )
258, 9, 243bitr4i 277 . . 3  |-  ( x 
C_  U. ( B  i^i  ~P x )  <->  ( x  C_ 
U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) ) )
2625abbii 2575 . 2  |-  { x  |  x  C_  U. ( B  i^i  ~P x ) }  =  { x  |  ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) }
271, 26syl6eq 2498 1  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1381   E.wex 1597    e. wcel 1802   {cab 2426   A.wral 2791   E.wrex 2792    i^i cin 3457    C_ wss 3458   ~Pcpw 3993   U.cuni 4230   ` cfv 5574   topGenctg 14707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-iota 5537  df-fun 5576  df-fv 5582  df-topgen 14713
This theorem is referenced by:  eltg2  19326
  Copyright terms: Public domain W3C validator