MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgval Structured version   Visualization version   Unicode version

Theorem tgval 19970
Description: The topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
tgval  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
Distinct variable groups:    x, B    x, V

Proof of Theorem tgval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 3054 . 2  |-  ( B  e.  V  ->  B  e.  _V )
2 uniexg 6588 . . 3  |-  ( B  e.  V  ->  U. B  e.  _V )
3 abssexg 4588 . . 3  |-  ( U. B  e.  _V  ->  { x  |  ( x 
C_  U. B  /\  x  C_ 
U. ~P x ) }  e.  _V )
4 uniin 4218 . . . . . . 7  |-  U. ( B  i^i  ~P x ) 
C_  ( U. B  i^i  U. ~P x )
5 sstr 3440 . . . . . . 7  |-  ( ( x  C_  U. ( B  i^i  ~P x )  /\  U. ( B  i^i  ~P x ) 
C_  ( U. B  i^i  U. ~P x ) )  ->  x  C_  ( U. B  i^i  U. ~P x ) )
64, 5mpan2 677 . . . . . 6  |-  ( x 
C_  U. ( B  i^i  ~P x )  ->  x  C_  ( U. B  i^i  U. ~P x ) )
7 ssin 3654 . . . . . 6  |-  ( ( x  C_  U. B  /\  x  C_  U. ~P x
)  <->  x  C_  ( U. B  i^i  U. ~P x
) )
86, 7sylibr 216 . . . . 5  |-  ( x 
C_  U. ( B  i^i  ~P x )  ->  (
x  C_  U. B  /\  x  C_  U. ~P x
) )
98ss2abi 3501 . . . 4  |-  { x  |  x  C_  U. ( B  i^i  ~P x ) }  C_  { x  |  ( x  C_  U. B  /\  x  C_  U. ~P x ) }
10 ssexg 4549 . . . 4  |-  ( ( { x  |  x 
C_  U. ( B  i^i  ~P x ) }  C_  { x  |  ( x 
C_  U. B  /\  x  C_ 
U. ~P x ) }  /\  { x  |  ( x  C_  U. B  /\  x  C_  U. ~P x ) }  e.  _V )  ->  { x  |  x  C_ 
U. ( B  i^i  ~P x ) }  e.  _V )
119, 10mpan 676 . . 3  |-  ( { x  |  ( x 
C_  U. B  /\  x  C_ 
U. ~P x ) }  e.  _V  ->  { x  |  x  C_  U. ( B  i^i  ~P x ) }  e.  _V )
122, 3, 113syl 18 . 2  |-  ( B  e.  V  ->  { x  |  x  C_  U. ( B  i^i  ~P x ) }  e.  _V )
13 ineq1 3627 . . . . . 6  |-  ( y  =  B  ->  (
y  i^i  ~P x
)  =  ( B  i^i  ~P x ) )
1413unieqd 4208 . . . . 5  |-  ( y  =  B  ->  U. (
y  i^i  ~P x
)  =  U. ( B  i^i  ~P x ) )
1514sseq2d 3460 . . . 4  |-  ( y  =  B  ->  (
x  C_  U. (
y  i^i  ~P x
)  <->  x  C_  U. ( B  i^i  ~P x ) ) )
1615abbidv 2569 . . 3  |-  ( y  =  B  ->  { x  |  x  C_  U. (
y  i^i  ~P x
) }  =  {
x  |  x  C_  U. ( B  i^i  ~P x ) } )
17 df-topgen 15342 . . 3  |-  topGen  =  ( y  e.  _V  |->  { x  |  x  C_  U. ( y  i^i  ~P x ) } )
1816, 17fvmptg 5946 . 2  |-  ( ( B  e.  _V  /\  { x  |  x  C_  U. ( B  i^i  ~P x ) }  e.  _V )  ->  ( topGen `  B )  =  {
x  |  x  C_  U. ( B  i^i  ~P x ) } )
191, 12, 18syl2anc 667 1  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1444    e. wcel 1887   {cab 2437   _Vcvv 3045    i^i cin 3403    C_ wss 3404   ~Pcpw 3951   U.cuni 4198   ` cfv 5582   topGenctg 15336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-iota 5546  df-fun 5584  df-fv 5590  df-topgen 15342
This theorem is referenced by:  tgval2  19971  eltg  19972  tgdif0  20008
  Copyright terms: Public domain W3C validator