MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgss Structured version   Unicode version

Theorem tgss 19640
Description: Subset relation for generated topologies. (Contributed by NM, 7-May-2007.)
Assertion
Ref Expression
tgss  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( topGen `  B )  C_  ( topGen `  C )
)

Proof of Theorem tgss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssrin 3709 . . . . . 6  |-  ( B 
C_  C  ->  ( B  i^i  ~P x ) 
C_  ( C  i^i  ~P x ) )
21unissd 4259 . . . . 5  |-  ( B 
C_  C  ->  U. ( B  i^i  ~P x ) 
C_  U. ( C  i^i  ~P x ) )
3 sstr2 3496 . . . . 5  |-  ( x 
C_  U. ( B  i^i  ~P x )  ->  ( U. ( B  i^i  ~P x )  C_  U. ( C  i^i  ~P x )  ->  x  C_  U. ( C  i^i  ~P x ) ) )
42, 3syl5com 30 . . . 4  |-  ( B 
C_  C  ->  (
x  C_  U. ( B  i^i  ~P x )  ->  x  C_  U. ( C  i^i  ~P x ) ) )
54adantl 464 . . 3  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( x  C_  U. ( B  i^i  ~P x )  ->  x  C_  U. ( C  i^i  ~P x ) ) )
6 ssexg 4583 . . . . 5  |-  ( ( B  C_  C  /\  C  e.  V )  ->  B  e.  _V )
76ancoms 451 . . . 4  |-  ( ( C  e.  V  /\  B  C_  C )  ->  B  e.  _V )
8 eltg 19628 . . . 4  |-  ( B  e.  _V  ->  (
x  e.  ( topGen `  B )  <->  x  C_  U. ( B  i^i  ~P x ) ) )
97, 8syl 16 . . 3  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( x  e.  (
topGen `  B )  <->  x  C_  U. ( B  i^i  ~P x ) ) )
10 eltg 19628 . . . 4  |-  ( C  e.  V  ->  (
x  e.  ( topGen `  C )  <->  x  C_  U. ( C  i^i  ~P x ) ) )
1110adantr 463 . . 3  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( x  e.  (
topGen `  C )  <->  x  C_  U. ( C  i^i  ~P x ) ) )
125, 9, 113imtr4d 268 . 2  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( x  e.  (
topGen `  B )  ->  x  e.  ( topGen `  C ) ) )
1312ssrdv 3495 1  |-  ( ( C  e.  V  /\  B  C_  C )  -> 
( topGen `  B )  C_  ( topGen `  C )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    e. wcel 1823   _Vcvv 3106    i^i cin 3460    C_ wss 3461   ~Pcpw 3999   U.cuni 4235   ` cfv 5570   topGenctg 14930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fv 5578  df-topgen 14936
This theorem is referenced by:  tgidm  19652  tgss3  19658  basgen  19660  2basgen  19662  tgfiss  19663  bastop1  19665  lecldbas  19890  txss12  20275  xrtgioo  21480
  Copyright terms: Public domain W3C validator